GDRE WORKSHOP Heavy Ions at Relativistic Energies

Open charm production in p+p and A+A collisions at 200 GeV with STAR at RHIC

Sonia Kabana Artemios Geromitsos **Witold Borowski**

Motivation

Suppression in non photonic electron yields for B and D mesons decays in central AuAu collision

The STAR Detector

B = 0.5 T

 $|\eta| < 1.5$

 $\Delta p/p = 2 - 4\%$

 $\frac{\sigma_{dE/dx}}{dE/dx} = 8$

Main tracking and PID device

Back plane

Electromagneti

Shower Maximum Detector gas chambers

5X0 EMC

shower

Barrel EMC

Electron energy measurement Lead scintillator (21 X_0)

 $|\eta| < 1.5$

Shower Maximum Detector

Wire proportional detector with strip readout <

Situated at 5 X_0 Resolution: $(\Delta \phi; \Delta \eta) = (0.007; 0.007)$

80% of the EM shower energy is being deposited in 2-3 strips

Front plane

The STAR Detector

Reconstruction of the D^o decay

Reconstruction of the D^o decay

DCA resolution

DCA resolution improves with the number of hits in SVT and SSD detectors!

At p = 1 GeV/c the DCA resolution improves by a factor of 10

Reconstruction of the D⁰ decay

µVertexing

 θ^*

angle between K and - direction of D0 in the rest frame of the parent

- *O* Primary vertex*C* Possible D0 decay point
- |AB| DCA between tracks
- |OC| Decay length
 - pointing angle

A

Charm and beauty contributions

11/06/2010

Trigger particle selection

Trigger particle selection

Sources of Contamination:

- Photon Conversion (material)
- neutral meson decays (π^0 , η)

- Calculate the invariant mass of every e⁺e⁻ and e⁺e⁺/e⁻e⁻
- Superimposing the plots indicates the cut at 150 MeV/c^2

Analysis Methodology

p+p 2006

Event Cuts

Vertex-Z ∈ (-30; 30) [cm]

Trigger electron $E_t > 5.4$ [GeV]

Au+Au 2007

Event Cuts

Vertex-Z ∈ (-20; 20) [cm]

Trigger electron $E_t > 4.2$ [GeV]

Track Cuts

DCA to Primary Vertex < 1.5 [cm] TPC hits > 25 (of 45 possible) $|\eta| < 1.0$

Monte Carlo (PYTHIA+GEANT)

 $\label{eq:Fit results} Fit \ results \\ Peak \ position \ m = 1865 \ \pm \ 4 \ MeV/c^2 \\ Width \ of \ the \ signal \ \sigma_m = 17 \ \pm \ 3 \ MeV/c^2 \\ \end{array}$

Data: no $\Delta \phi$ (e-D0) cut

Fit results

Peak position m = 1892 ± 5 MeV/c² Width of the signal $\sigma_m = 14.7\pm4.7$ MeV/c² Signal significance ~4.85

Data: $\Delta \phi(e-D0) = 0 \pm 1.2$

Fit results

Peak position m = $1893\pm 6 \text{ MeV/c}^2$ Width of the signal $\sigma_m = 10.8\pm 4.2 \text{ MeV/c}^2$ Signal significance ~2.5

Data: $\Delta \phi(e-D0) = \pi \pm 1.2$

Fit results

Peak position m = $1888 \pm 6 \text{ MeV/c}^2$ Width of the signal $\sigma_m = 16.0 \pm 5.0 \text{ MeV/c}^2$ Signal significance ~3.04

Comparison

 $\Delta \varphi(e-D0) = 0 \pm 1.2$

Peak position m = $1893\pm 6 \text{ MeV/c}^2$ Width of the signal $\sigma_m = 10.8\pm 4.2 \text{ MeV/c}^2$ Signal significance ~2.5

$\Delta \varphi(\text{e-D0}) = \pi \pm 1.2$

Peak position m = $1888 \pm 6 \text{ MeV/c}^2$ Width of the signal $\sigma_m = 16.0 \pm 5.0 \text{ MeV/c}^2$ Signal significance ~3.04

Charm and beauty yields in agreement with PYTHIA simulations

J. Phys. G35, 104117 (2008)

Publication on pp2006 – will be submitted in few days

Measurement of the Bottom contribution to non-photonic electron production in p + pcollisions at $\sqrt{s}=200$ GeV

M. M. Aggarwal,³¹ Z. Ahammed,²² A. V. Alakhverdyants,¹⁸ I. Alekseev,¹⁶ J. Alford,¹⁹ B. D. Anderson,¹⁹ DanielAnson,²⁹ D. Arkhipkin,³ G. S. Averichev,¹⁸ J. Balewski,²³ L. S. Barnby,² S. Baumgart,⁵³ D. R. Beavis,³ R. Bellwied,⁵¹ M. J. Betancourt,²³ R. R. Betts,⁸ A. Bhasin,¹⁷ A. K. Bhati,³¹ H. Bichsel,⁵⁰ J. Bielcik,¹⁰ J. Bielcikova,¹¹ B. Biritz,⁶ L. C. Bland,³ B. E. Bonner,³⁷ J. Bouchet,¹⁹ E. Braidot,²⁸ A. V. Brandin,²⁶ A. Bridgeman,¹ E. Bruna,⁵³ S. Bueltmann,³⁰ I. Bunzarov,¹⁸ T. P. Burton,³ X. Z. Cai,⁴¹ H. Caines,⁵³ M. Calderón de la Barca Sánchez,⁵ O. Catu,⁵³ D. Cebra,⁵ R. Cendejas,⁶ M. C. Cervantes,⁴³ Z. Chajecki,²⁹ P. Chaloupka,¹¹ S. Chattopadhyay,⁴⁸ H. F. Chen,³⁹ J. H. Chen,⁴¹ J. Y. Chen,⁵² J. Cheng,⁴⁵ M. Cherney,⁹ A. Chikanian,⁵³ K. E. Choi,³⁵ W. Christie,³ P. Chung,¹¹ R. F. Clarke,⁴³ M. J. M. Codrington,⁴³ R. Corliss,²³ J. G. Cramer,⁵⁰ H. J. Crawford,⁴ D. Das,⁵ S. Dash,¹³ A. Davila Levva,⁴⁴ L. C. De Silva,⁵¹ R. R. Debbe,³ T. G. Dedovich,¹⁸ A. A. Derevschikov,³³ R. Derradi de Souza,⁷ L. Didenko,³ P. Djawotho,⁴³ S. M. Dogra,¹⁷ X. Dong,²² J. L. Drachenberg,⁴³ J. E. Draper,⁵ J. C. Dunlop,³ M. R. Dutta Mazumdar,⁴⁸ L. G. Efimov,¹⁸ E. Elhalhuli,² M. Elnimr,⁵¹ J. Engelage,⁴ G. Eppley,³⁷ B. Erazmus,⁴² M. Estienne,⁴² L. Eun,³² O. Evdokimov,⁸ P. Fachini,³ R. Fatemi,²⁰ J. Fedorisin,¹⁸ R. G. Fersch,²⁰ P. Filip,¹⁸ E. Finch,⁵³ V. Fine,³ Y. Fisyak,³ C. A. Gagliardi,⁴³ D. R. Gangadharan,⁶ M. S. Ganti,⁴⁸ E. J. Garcia-Solis,⁸ A. Geromitsos,⁴² F. Geurts,³⁷ V. Ghazikhanian,⁶ P. Ghosh,⁴⁸ Y. N. Gorbunov,⁹ A. Gordon,³ O. Grebenyuk,²² D. Grosnick,⁴⁷ S. M. Guertin,⁶ A. Gupta,¹⁷ W. Guryn,³ B. Haag,⁵ A. Hamed,⁴³ L-X. Han,⁴¹ J. W. Harris,⁵³ J. P. Hays-Wehle,²³ M. Heinz,⁵³ S. Heppelmann,³² A. Hirsch,³⁴ E. Hjort,²² A. M. Hoffman,²³ G. W. Hoffmann,⁴⁴ D. J. Hofman,⁸ B. Huang,³⁹ H. Z. Huang,⁶ T. J. Humanic,²⁹ L. Huo,⁴³ G. Igo,⁶ P. Jacobs,²² W. W. Jacobs,¹⁵ C. Jena,¹³ F. Jin,⁴¹ C. L. Jones,²³

Ongoing analysis for pp2009 data. Grater Statistics – 900M (Min Bias)

Heavy flavor contribution to non-photonic electrons

Conclusion from e-h and e-D correlations:

<u>B contribution to non photonic electrons</u> <u>is ~50% at $p_T \sim 5 \text{ GeV/c}$ </u>

J. Phys. G35, 104117 (2008)

Au+Au 2007

MinBias ~62M – Prod MinBias ~19 M – Prod2 D⁰/D⁰ ratio

btag ~1.5 M events

High energy electron triggered events e-D⁰ correlation

Cuts Study

Already studied

- Decay Length
- DCA Btwn. Tracks
- DCA D0 to PV
- DCA Tracks to PV
- Cos(θ*)

More are on the way

Cutset

- SVT + SSD ≥ 1
- DCA btwn. tracks ≤ 0.06 cm
- DCA D0 to PV ≤ 0.1 cm
- Decay length ≤ 0.2 cm
- $\cos(\theta_{K}^{*}) \leq 0.6$
- $p_T(K,\pi) \ge 0.8 \text{ GeV/c}$

One of 114 cutsets (and counting)

> Statistics 94k events

<u>no $\Delta \phi$ (e-D0) cut</u>

Significance $\int \text{signal}/\sqrt{(S+B)} \text{ [mass } \pm 2 \cdot \sigma \text{]}$

Au+Au 2007 vs p+p 2006

Au+Au 2007

$\Delta \phi(e\text{-}D0) = 0 \pm 1.2$ Peak position m = 1860 ± 8 MeV/c² Width of the signal $\sigma_m = 20 \pm 0.8$ MeV/c²

Signal significance ~6.61

$\Delta \phi(\text{e-D0}) = \pi \pm 1.2$

Peak position $m = 1880 \pm 5 \text{ MeV/c}^2$ Width of the signal $\sigma_m = 10 \pm 8 \text{ MeV/c}^2$ Signal significance ~1.75

p+p 2006

$\Delta \phi(e\text{-}D0) = 0 \pm 1.2$ Peak position m = 1893±6 MeV/c² Width of the signal $\sigma_m = 10.8 \pm 4.2$ MeV/c² Signal significance ~2.5

$\Delta \phi(\text{e-D0}) = \pi \pm 1.2$

Peak position m = $1888\pm 6 \text{ MeV/c}^2$ Width of the signal $\sigma_m = 16.0\pm 5.0 \text{ MeV/c}^2$ Signal significance ~3.04

11/06/2010

$\Delta \phi(e\text{-D0}) = 0 \pm 1.2$ Peak position m = 1860 ± 8 MeV/c² Width of the signal $\sigma_m = 20 \pm 0.8$ MeV/c²

Signal significance ~6.61

$\Delta \phi(\text{e-D0}) = \pi \pm 1.2$

Peak position m = $1880 \pm 5 \text{ MeV/c}^2$ Width of the signal $\sigma_m = 10 \pm 8 \text{ MeV/c}^2$ Signal significance ~1.75

$$sign(e) \neq sign(K)$$

$\Delta \phi(e\text{-D0}) = 0 \pm 1.2$ Peak position m = 1855 ± 9 MeV/c² Width of the signal $\sigma_m = 20 \pm 6 \text{ MeV/c}^2$ Signal significance ~3.35

$\Delta \phi(\text{e-D0}) = \pi \pm 1.2$

Peak position m = $1859 \pm 4 \text{ MeV/c}^2$ Width of the signal $\sigma_m = 10 \pm 1 \text{ MeV/c}^2$ Signal significance ~ 1.06

11/06/2010

e-D0 – Conclusions

Conclusions

- <u>Publication on e-D0 correlation in pp2006 is ready for</u> <u>submission</u>
 - "The B decay contribution increases with pT and is comparable to the contribution from D meson decay at pT 5 GeV/c"
- <u>D0 peak for AuAu</u>
 - A peak up to significance ~ 6.7 has been observed
 - The peak is much grater for the near side than away side (for both eK sign cases)
 - This result is stable

$D^0 + \overline{D}^0$

 $\label{eq:signal} \begin{array}{l} Significance \\ \mbox{$ \signal/$ \sqrt{$}(S+B) $ [mass ± 2\cdot$ σ]} \end{array}$

Cutset

- SVT + SSD ≥ 2
- DCA btwn. tracks ≤ 0.1 cm
- DCA D0 to PV ≤ 0.1 cm
- Decay length ≤ 0.1 cm

Statistics 2.5M events

11/06/2010

\overline{D}^{0}/D^{0} ratio

D0 & D0Bar Yields [AuAu07 Prod2 Statistics: 2.5M]

$\overline{D}^0/D^0 = 0.78 \pm 0.40 \ (\sim 51\%)$

Conclusions

- Peak exists only for the first 2.5M events (out of 10M)
 - We are investigating that problem (in collaboration with KSU)
- Ongoing work on D0 embedding
 - First embedding ever with SVT ans SSD
 - Leeds to D⁰ yields correction for the MinBias
- <u>A peak for full statistics</u> <u>has been observed (5.7σ)</u> <u>which is stable with different</u> <u>cuts</u>
- <u>D0/D0 ratio first estimate</u>

Outlook

• <u>p+p</u>

- Analysis of the 2009 data have just started (Increased statistics)
- <u>Au+Au btag</u>
 - Separate analysis for D^0 and $\overline{D}{}^0$
 - Background improvement (Mixed events)
 - Investigation on the physics behind the yields (EPOS?)
 - Juts launched collaboration with Klaus Werner at al. and WUT group
 - Fit for the secondary vertex
 - Studies in the bins of multiplicity and pT
 - Analysis of the correlation with different opening angles