Kinematic Fitting

Armen Kechechyan

JINR, Dubna

09 June 2010 Nantes

Outline

✓ Introduction

✓ Algorithm

✓ Testing

✓ STAR analysis

✓ Summary

Introduction

Kinematic fitting is a mathematical procedure in which one uses the physical laws governing a particle interaction or decay *to improve the measurements of the process, test hypothesis and to find unknown parameters.*

Physical information is supplied via *constraints*. Each constraint is expressed in the form of an equation manifesting some physical condition that the process must satisfy.

Constraints are generally implemented through a *least-squares procedure*. Each constraint equation is added via the *Lagrange multiplier technique* to the χ^2 equation of the tracks using the covariance matrices of the tracks.

The expression for χ^2 and constraints can be written in the matrix form:

$$\chi^{2} = (\boldsymbol{\alpha} - \boldsymbol{\alpha}_{0})^{T} \mathbf{V}_{\alpha_{0}}^{-1} (\boldsymbol{\alpha} - \boldsymbol{\alpha}_{0})$$
$$\mathbf{H}(\boldsymbol{\alpha}) = \mathbf{0} \quad -\text{constraints}$$

Vector of **r** constraints (nonlinear equality) $\mathbf{H}(\boldsymbol{\alpha}) \equiv \left(H_1(\boldsymbol{\alpha}), ..., H_r(\boldsymbol{\alpha})\right)$

In the mathematics this problem known as *nonlinear minimization problem with nonlinear equality constraints*.

Simplification: Linearization of the equation – expanding around a convenient point α_A

 $\mathbf{H}(\boldsymbol{\alpha}) = \mathbf{0}$

 $[\mathbf{H}(\boldsymbol{\alpha}_{A}) + \partial \mathbf{H}(\boldsymbol{\alpha}_{A}) / \partial \boldsymbol{\alpha}](\boldsymbol{\alpha} - \boldsymbol{\alpha}_{A}) \equiv \mathbf{D} \delta \boldsymbol{\alpha} + \mathbf{d} = \mathbf{0}$ $\mathbf{D} \equiv \begin{pmatrix} \frac{\partial H_{1}}{\partial \alpha_{1}} & \dots & \frac{\partial H_{1}}{\partial \alpha_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial H_{n}}{\partial \alpha_{1}} & \dots & \frac{\partial H_{n}}{\partial \alpha_{n}} \end{pmatrix} \qquad \delta \boldsymbol{\alpha} = \boldsymbol{\alpha} - \boldsymbol{\alpha}_{A} \qquad \mathbf{d} \equiv \begin{pmatrix} H_{1}(\boldsymbol{\alpha}_{A}) \\ \vdots \\ H_{r}(\boldsymbol{\alpha}_{A}) \end{pmatrix}$

The constraints are incorporated by using the method of Lagrange multipliers in which the χ^2 is written as a sum of two terms:

$$\chi^2 = \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}_0\right)^T \mathbf{V}_{\boldsymbol{\alpha}_0}^{-1} \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}_0\right) + 2\lambda^T (\mathbf{D}\delta\boldsymbol{\alpha} + \mathbf{d})$$

 λ is a vector of Lagrange multipliers

Minimizing the χ^2 with respect to α and λ yields two vector equations

$$\mathbf{V}_{\boldsymbol{\alpha}_0}^{-1} \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}_0 \right) = \mathbf{0}$$
$$\mathbf{D} \delta \boldsymbol{\alpha} + \mathbf{d} = \mathbf{0}$$

which can be solved for the parameters and their covariance matrix.

Iterative procedure:

1 step: $\alpha_A = \alpha_0$ first approximation $\alpha^{(0)}$ 2 step: $\alpha_A = \alpha^{(0)}$ second approximation $\alpha^{(1)}$

Convergence criterion

$$(\chi^2)^{i+1} - (\chi^2)^i | < \varepsilon$$

. . .

Test of the fitting algorithm

The *kinematic fitting* procedure was applied for the analysis of the K_S^0 decay $K_S^0 \rightarrow \pi^+ + \pi^-$

The set of the fitting parameters for each particle $\alpha = (1/p_T, \varphi, \tan(dip))$ Constraints (4-momentum conservation law) $p_{K_s^0}^{\mu} - p_{\pi^+}^{\mu} - p_{\pi^-}^{\mu} = 0, \quad \mu = 1, 2, 3, 4$

Toy Monte Carlo simulation with Gaussian shape errors

The resolution of "experimental" measurements improved

Test of kinematic & geometrical fitting

 $p_{K^{0}}^{\mu}$

The set of the fitting parameters for each particle $\alpha = (1 / p_T, \phi, \tan(dip), x, y, z)$

Toy Monte Carlo simulation with Gaussian shape errors

Kinematical constraints

$$-p_{\pi^{+}}^{\mu} - p_{\pi^{-}}^{\mu} = 0, \quad \mu = 1, 2, 3, 4$$

Geometrical constraints
(helices intersection)
 $\vec{r}_{\pi^{+}}(s_{1}) - \vec{r}_{\pi^{-}}(s_{2}) = 0$
 $\vec{r}(s) \equiv (x(s), y(s), z(s))$

Parameters	σ
1/p _T	1%
φ	0.005 Rad
tan(dip)	0.005
x ₀ , y ₀	0.085 cm
Z ₀	0.125 cm
$\mathbf{x}_{\mathrm{V0}}, \mathbf{y}_{\mathrm{V0}}$	0.3 cm
Z _{V0}	0.25 cm

The resolution of "experimental" measurements improved

Test of kinematic & geometrical fitting (con'd)

V0 vertex space resolution is improved

STAR Simulation & dAu@200 GeV

 $K_{S}^{0} \rightarrow \pi^{+} + \pi^{-}$

HIJING-3.82 + GEANT + Reconstruction 175K MinBais events

Strong suppression of background

STAR Simulation & dAu@200 GeV (con'd)

The resolution of "experimental" measurements are improved

STAR Simulation & dAu@200 GeV (con'd)

V⁰ vertex space resolution is significantly improved

STAR Data Sample

The invariant mass distributions

Armenteros-Podolanski plot

High transverse momentum spectra

dAu @ 200 GeV $|\eta| < 1, p_T > 0.5 GeV/c$

High statistics of spectra for high- p_T range

STAR vs. PHENIX, PHOBOS spectra

STAR data are in a good agreement with the **PHENIX & PHOBOS** data in the overlapping range

Gamma quanta & π^0

dAu @ 200 GeV

Gamma ray picture of **STAR** detector

x,y,z coordinates of γ conversion points

Invariant mass distribution for 2γ

Reconstruction π^0 in TPC

JUNR.

Strange resonances

Fit function = Non Relativistic Breit-Wigner

 Fit data

 mass
 0.8867 ±0.0013 GeV/c²

 width
 0.0498 ±0.0051 GeV/c²

PDG data 0.89166 GeV/c² 0.0508 GeV/c²

Summary

- Kinematic fitting was suggested and tested using MC data.
- This method was applied for reconstruction of V^0 particles from the STAR data.
- Transverse yields of K_S^0 , Λ^0 , $\overline{\Lambda^0}$ particles in dAu collisions at 200 GeV at high p_T were obtained.
- Possibility of γ and π^0 reconstruction in the TPC by using the kinematic fit was shown.
- > The improved resolution of the V0 kinematic and geometrical parameters was obtained.

Thanks for Your Attention !

