

RHIC Beam Energy Scan Program Experimental Approach to the QCD Phase Diagram

Grazyna Odyniec / LBNL, Berkeley

Outline :

QCD phase diagram

Heavy Ion Collisions – the only experimental tool BES @ RHIC: Physics goals and observables:

- search for the CP and 1st order phase transition
- demonstrate the onset of deconfinement (QGP)

USA-NSAC 2007 Long-range Plan

QCD phase diagram - Theory

M.Stephanov, hep-ph/0402115v1 (March 2006)

Theory at the "edges" is believed to be well understood:

- 1. Lattice QCD finds a smooth crossover at large T and $\mu_{\text{B}}{\sim}0$
- 2. Various models find a strong 1st order transition at large μ_{B}

So, there must be a critical point, but where?

Lattice at $\mu_B \neq 0$: serious problems, several methods on lattice, no agreement so far: \longrightarrow CP range: 160< μ_B <500 MeV

Given the significant theoretical difficulties, data may lead the study of QCD phase diagram

Beam Energy Scan Program at RHIC will cover this range

Grazyna Odyniec

Beam Energy Scan at RHIC: $\sqrt{s_{NN}} \sim 5-50 \text{ GeV}$

experimental window to QCD phenomenology

at finite temperature and baryon number density

at RHIC : indications of sQGP but remain <u>unknown</u>:

- boundary between hadronic and partonic phases
- critical point

HOW to investigate it ? BES @ RHIC 160 MeV<µ_B<500 MeV

also: SPS, FAIR (fixed target)

Why RHIC is such an excellent choice ? - Collider

Excellent control of systematics !

Grazyna Odyniec

Luminosity is the key issue

Determined collision rate for 2008 9.2 GeV Au+Au test to be ~1Hz.

Rate can be increased by:

• factor 2 by adding more bunches, only 56 used for tests (max 120).

• factor 3-6 by operating with higher charge in bunches.

• factor few by running in continuous injection mode

• electron cooling in RHIC (after 2012)

Expect to reach γ^3 rate even at lowest energies

Grazyna Odyniec

BES: Experimental Program

http://drupal.star.bnl.gov/STAR/starnotes/public/sn0493

Search for:

(1) indications of the existence of Critical Point & phase transition

• fluctuation measures

•higher moments of net proton distribution (kurtosis)

- azimuthally-sensitive femtoscopy
- elliptic & directed flow

(2) disappearance of signals of partonic degrees of freedom seen at 200 GeV

- disappearance of constituent-quark-number scaling of v_2
- disappearance of hadron suppression in central collisions
- disappearance of ridge
- local parity violation
- ...

•

Grazyna Odyniec

 \bigstar

 \checkmark

6

Critical Point search – Fluctuations maximized at CP example: e-by-e fluctuations in K/π ratio

PRL 103, 092301 (2009)

Grazyna Odyniec

more sensitive : - Higher Moments

<u>Thermodynamics:</u> Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point.

Lattice QCD: Spikes for both χ_B and χ_S

Berdnikov, Rajagopal, PRD61, 105017 (00) Stephanov, Rajagopal, Shuryak, PRD 60, 114028 (99) Hatta, Stephanov, PRL. 91, 102003 (03)

Observable:

Kurtosis of net-proton & net-C

- connect to lattice calculations!
- sensitive to long range fluctuations

Caveats: dynamical effects in collisions

- finite time and size
- critical slowing

Centrality dependence of net-proton Kurtosis

STAR Preliminary:

First Kurtosis measurement for net-protons in high-energy nuclear collisions Monotonic behavior observed at relatively small μ_B region $\rightarrow \underline{baseline}$ *Grazyna Odyniec*

Disappearance of partonic degrees of freedom (I) (Onset of sQGP)

disappearance of n_q scaling, disappearance of hadron suppression at high pt, ... (a long list)

 n_{α} scaling observed at RHIC:

- (1) Mass separation at low p_T
- (2) Light and heavy quarks have similar magnitude of flow
- In intermediate p_T: separation between baryon and meson band

Grazyna Odyniec

Disappearance of partonic degrees of freedom (II)

Scaling flow parameters by quark content n_q (baryons=3, mesons=2) resolves meson-baryon separation of final state hadrons

With lowering energy, disappearance of n_q scaling would suggest that we exit partonic dof world

Grazyna Odyniec

Will we be able to see it ?

PRL <u>92,</u> 052302(04), <u>95,</u> 122301(05), nucl-ex/0405022, QM05

Local Parity Violations in Deconfined Medium

D.E. Kharzeev et al, NPA 803, 227 (2008) K. Fukushima et al, PRD 78, 074033 (2008)

ccccc

- (1) Under strong magnetic field, when the system is in the state of deconfinement and chiral symmetry restoration is reached, local fluctuation may lead to parity violation.
- (2) Experimentally one would observe the separation of the charges in highenergy nuclear collisions.
- (3) In RHIC Beam Energy Scan program:
 - test the model prediction
 - the energy when the charge separation disappear => phase boundary

Collision Energies (GeV)	5	7.7	11.5	17.3	27	39	
Observables	Millions of Events Needed						
v_{2} (up to ~1.5 GeV/c)	0.3	0.2	0.1	0.1	0.1	0.1	
V_1	0.5	0.5	0.5	0.5	0.5	0.5	
Azimuthally sensitive HBT	4	4	3.5	3.5	3	3	
PID fluctuations (K/ π)	1	1	1	1	1	1	
net-proton kurtosis	5	5	5	5	5	5	
differential corr & fluct vs. centrality	4	5	5	5	5	5	
n_q scaling $\pi/K/p/\Lambda$ (m_T - m_0)/ n <2GeV	8.5	6	5	5	4.5	4.5	
ϕ/Ω up to $p_T/n_a=2$ GeV/c		56	25	18	13	12	
R_{CP} up to $p_T \sim 4.5$ GeV/c (at 17.3) 5.5 (at 27) & 6 GeV/c (at 39)				15	33	24	
untriggered ridge correlations		27	13	8	6	6	
parity violation		5	5	5	5	5	

Grazyna Odyniec

Requested Beam Energies and # of Days Running (from STAR BUR)

Beam						
Energy		Event				
sqrt(s)	μ_{B}	Rate	Days/1M	Events	8-hr days	
(GeV)	(MeV)	(Hz)	Events	proposed	proposed	
5	550	0.8	45	200 k	9	
7.7	410	3	11	5M	56	
11.5	300	10	3.7	5M	19	
17.3	230	33	1.1	15M	16	
27	150	92	0.4	33M	12	
39	110	190	0.2	24M	5	

Som Brazil 2000

Recommendations of BNL Nuclear and Particle Physics Program Advisory Committee (PAC):

Run 10 (2010):

- 1. 10 weeks of Au+Au at 200 GeV
- 2. 12 weeks for a beam energy scan (BES) with Au+Au collisions:
 - 1. 4 weeks 62 GeV
 - 2. 8 weeks lower energies
 - 1. 0.5 week 39 and 27 GeV
 - 2. 1 week at 18 GeV (10 M)
 - 3. 2 weeks at 11 GeV (6 M)
 - 4. 4 weeks at 7.7 GeV (3.6 M)

Post-PAC realism (BNL "straw man" proposal): 7.7 GeV run -> run11 run 10: 39 GeV -1.5 w, 27 GeV - 3.5 w, 18 Gev- 2.5 w, 11.5 GeV -2.5 w, 7GeV - 1w.

Grazyna Odyniec

The John Cramer Symposium, University of Washington, Seattle, Sept. 10-11, 2009

STAR already has experience with low energy running

 STAR has already experiences with low energy running 19.6 GeV Au+Au (2001) 22.4 GeV Cu+Cu (2005) 9.9 GeV Au+Au (2007) 9.2 GeV Au+Au (2008)

What have we done to get ready for a BES ? STAR Upgrades : trigger, Time of Flight (TOF), DAQ1000

Grazyna Odyniec

9.2 GeV Au+Au March 2008

STAR experiment demonstrated capabilities

9.2 GeV results consistent with the published data

STAR : PRC 79 (2009) 034909, arXiv: 0903.4702 NA49 : PRC 66 (2002) 054902, PRC 77 (2008) 024903, PRC 73 (2006) 044910 E802(AGS) : PRC 58 (1998) 3523, PRC 60 (1999) 044904, PRC 62 (2000) 024901, PRC 68 (2003) 054903

Grazyna Odyniec

Elliptic Flow

STAR and NA49 results are consistent STAR 9.2GeV v₂ fits with the observed trends NA49 : PRC 68 (2003) 034903 AGS : PLB 474 (2000) 27 STAR : PRC 77 (2008) 054901 : PRC 75 (2007) 054906, PRC 72 (2005) 014904 PHOBOS : PRC 72 (2005) 051901 : PRL 98 (2007) 242302 PHENIX : PRL 98 (2007) 162301

Grazyna Odyniec

Pion Interferometry

Grazyna Odyniec

Summary – part I (BES@RHIC)

Main directions of Beam Energy Scan program at RHIC are established:

- Search for turn-off of sQGP signatures
- Search for the evidence of CP and/or 1st order phase transition
- + many other measurements

We propose to first scan available phase space with 6 equally spaced points between 5 and 39 GeV (we already have 62, 130, 200 data), and return to "interesting" regions for more detailed studies in the next year

STAR is ready:
STAR BES program will be definite (yes/no)
Demonstrated capabilities to complete program
Perfect time: low interior mass, PID due to TOF, DAQ with DAQ1000

CERN Beam Energy Scan Program – NA61/ SHINE

receed

What is the difference vs. NA49 ?

New spectator calorimeter for centrality selection Forward Time-Of-Flight Beam pipe TPC readout

Detector upgrades are necessary.

Physics program:

Studying QCD Critical Point and Onset of various observations with varying colliding ion size, collision centrality and having a proper p+p baseline

NA61/Shine search for the critical point

Summary - part II

Train is leaving the station ...

BES at RHIC (STAR,PHENIX, collider exp.) starting date December 2009 (run 10) to continue in 2011 (run 11)

BES at CERN (NA61/Shine, fixed targ.exp.) starting date with ion data 2011 (A~30) to continue in 2012 and 2013 (with lighter and heavier ions)

Other facilities: FAIR/Darmstadt, NICA/Dubna – much later (~2015)

Grazyna Odyniec

QCD phase diagram - Theory

RHIC: indication of QGP presence

Phys. Rev. C 72, 014904 (2005) Phys. Rev. Lett. 95, 122301(2005) Phys. Rev. Lett. 91, 072304 (2003) Phys. Rev. Lett. 92, 112301(2004) $R_{AB}(p_{T})$ 0.15 🖂 d+Au FTPC-Au 0-20% 2 200 GeV (0-80%) 🔺 d+Au Minimum Bias ΦΩ 0.1 v_2 / n_q 1.5 0.05 0.5 Estimated statistical errors @ 11.5 GeV (0-43.5%) — 5M π --- 1M p * Au+Au Central - 5M p 0.5M p 3.5 -0.05 8 10 0.5 1.5 2 6 p_T (GeV/c) $(m_{T}-m_{0}) / n_{a} (GeV/c^{2})$ $R_{AB}(p_T) = \frac{d^2 N/dp_T d\eta}{T_{AB} d^2 \sigma^{pp}/dp_T d\eta},$

> strong suppression of high p_T hadrons number of constituent quark scaling in v_2 measurements Where will this break down ?

Grazyna Odyniec

SQM, Brazil, 2009

Phys. Rev. Lett. 92, 052302 (2004)

Long range correlations will induce fluctuations in p_T when the system is in the vicinity of a critical point

See talk by G. Westfall CPOD 2009 Monday

Grazyna Odyniec