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Abstract

Direct photons have been proposed as a promising signature for the quark-gluon plasma
(QGP) formation in relativistic heavy-ion collisions. Recently WA98 presented the first
data on direct photons inPb+Pb-collisions at SPS. At the same time RHIC started with
its experimental program. The discovery of the QGP in these experiments relies on a com-
parison of data with theoretical predictions for QGP signals. In the case of direct photons
new results for the production rates of thermal photons fromthe QGP and a hot hadron
gas as well as for prompt photons from initial hard parton scatterings have been proposed
recently. Based on these rates a variety of different hydrodynamic models, describing the
space-time evolution of the fireball, have been adopted for calculating the direct photon
spectra. The results have been compared to the WA98 data and predictions for RHIC and
LHC have been made. So far the conclusions of the various models are controversial.

The aim of the present review is to provide a comprehensive and up-to-date survey and
status report on the experimental and theoretical aspects of direct photons in relativistic
heavy-ion collisions.
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1 Introduction

The major motivation to study relativistic heavy-ion collisions is the search for the
quark-gluon plasma (QGP), a potential new state of matter where colored quarks
and gluons are no longer confined into hadrons and chiral symmetry is restored.
The phase transition to quark matter has been predicted firstfor the interior of
neutron stars [1,2] and afterwards in high-energy nucleus-nucleus collisions [3–5].
Subsequently it has been studied in great detail in lattice QCD [6]. The quark-gluon
plasma phase could provide insight in the important non-perturbative features that
usually govern hadronic physics.

A wealth of knowledge has been accumulated by the early experiments especially
at the CERN SPS accelerator (see e.g. [7,8]). Many of the properties of these col-
lisions have been studied and interesting observations have been made concerning
non-trivial behavior of the strongly interacting matter, most notably the suppression
of J/ψ production beyond the expectation from normal nuclear effects, the enhance-
ment of strangeness production, modifications of the dilepton spectrum and direct
photon production in excess of known extrapolations from particle physics. Some
of these observations were actually predicted to happen in relation to the phase tran-
sition to a QGP, and one possible conclusion, guided by Ockham’s razor1 , is to see
the experimental hints as evidence, though “circumstantial”, of the new phase [9].

However, a real understanding of the related physical concepts is extremely diffi-
cult. Not only are most of the involved processes soft, and thereby in the domain
of large coupling constants where perturbation theory breaks down, but the system
itself is a multi-particle system, which is already a challenge in situations where
the underlying interaction is much weaker. Although one might hope that in large
enough nuclei the system might be governed at least partially by laws of thermo-
dynamics, and thus be treatable, the conditions are complicated further by the need
to control the residual non-equilibrium aspects.

To study such a complicated system one wishes for a probe thatis not equally com-
plicated in itself. The production of hadrons is of course governed by the strong
interaction and therefore adds to the complication. One possible way out might be
the study of hard processes where QCD, the theory of strong interaction, enters the
perturbative regime and is calculable. The other avenue involves a particle that suf-
fers only electromagnetic interaction: Photons — both realand virtual — should
be an ideal probe.2 As we will discuss in the present report, while photon produc-
tion may be less difficult to treat than some other processes in hadronic physics,
an adequate treatment in heavy-ion collisions turns out to be far from trivial. Ex-
perimentally, high energy direct photon measurement has always been considered a
challenge. This is true already in particle physics and evenmore in the environment

1 “Law of Parsimony” by William of Ockham, 14th century
2 For previous reviews on this topic see Refs. [10,11].
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of heavy-ion collisions. Nevertheless a lot of progress hasbeen made and a large
amount of experimental data is available, though mostly from particle physics. Di-
rect photon measurements in heavy-ion collisions are expected to come into real
fruition with the advent of colliders like RHIC and LHC.

In the present report we attempt to provide a comprehensive review of the theoreti-
cal and experimental aspects of the study of direct photon production in heavy-ion
collisions. We will also touch photon production in proton-proton collisions as far
as we consider it relevant to our main subject. Because of thelarge amount of work
existing, we will most likely not be able to do justice to all of it, and we would like
to apologize for any omission or mistreatment of related publications.

The structure of the present report will be as follows: In thenext Section we will
discuss the theoretical status of the photon production from pp toAA collisions. In
particular, we will consider the calculation of the rates from the QGP, from the hot
hadron gas, and from initial hard collisions. Furthermore,we review some basics of
the hydrodynamical description for deriving photon spectra in heavy-ion collisions.
In Section 3 experimental concepts for measuring direct photons and results from
pp andpA collisions as well as from16O-, 32S- and 208Pb-induced reactions are
reviewed. In Section 4 these results are compared to theoretical calculations, and
predictions for RHIC and LHC are presented. The following summary will con-
clude this review. Appendix A and B provide some technical details for calculating
the photon production rate from the QGP.
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2 Theoretical Status

The theoretical prediction and calculation of the photon emission, i.e. yields and
spectra, from a thermal system has a long tradition, culminating in the discovery
of quantum physics [12]. In astrophysics the detection of electromagnetic radia-
tion from the hot surfaces of stars and other objects, even from the entire universe
(Cosmic Microwave Background), provides the most essential information, such
as temperature, size, chemical composition etc. In particular deviations from the
pure black-body spectrum are of utmost interest, e.g. to learn about the composi-
tion, evolution, and structure formation in the universe from the Cosmic Microwave
Background [13].

The photon emission from the nuclear fireball, created in a relativistic heavy-ion
collision, differs from the one of macroscopic stellar objects in the following re-
spect. Whereas the photons in the latter case are thermalized when they leave the
surface, the mean-free path of the photons produced in nucleus-nucleus collisions
is large compared to the size of the fireball. Hence, the photons do not interact after
their production and leave the fireball undisturbed. As a consequence they carry
information about the stage of the fireball at the time of their creation. The photon
spectrum, containing photons from all stages, allows therefore to study the entire
evolution of the fireball. Direct photons, together with dileptons and to some extent
hard probes like jet quenching, are therefore a unique diagnostic tool for the dif-
ferent phases and the equation of state (EOS) of the ultradense matter produced in
high-energy nuclear collisions. Photon production in high-energy nuclear and par-
ticle physics provides information on the momentum distributions of the emitting
particles. In particle physics this may be used to extract information on structure
functions. In thermalized systems, expected in nuclear collisions, it should yield
information on the thermal distributions.

To draw conclusions about the state of the matter in the fireball, created in relativis-
tic heavy-ion collisions, it is necessary to compare the experimental data for direct
photons with theoretical calculations. The ideal theoretical description would be a
comprehensive treatment of the entire space-time evolution of the fireball from the
first contact of the cold nuclei to the freeze-out and subsequent decay of hadrons,
e.g. in a dynamical lattice QCD approach. At the same time allparticipating parti-
cle species and their interactions should be included. Due to the complexity of the
problem, e.g. the consistent treatment of hadronization and the non-perturbative
nature of the strong interaction, such a systematic investigation is presently only
wishful thinking. Alternatively, the different stages of the fireball (initial stage, pre-
equilibrium QGP, thermal QGP, mixed phase3 and hadronization, hot hadron gas,
freeze-out and hadronic decays) are treated separately. Furthermore, one computes

3 The existence of a mixed phase as a consequence of a first orderphase transition is
questionable since recent lattice calculations prefer a cross over [14].
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first the production rates of the photons from the different stages, e.g. at a given
temperature. Then these rates are convoluted with the space-time evolution of the
fireball using mostly hydrodynamical models. In this way, estimates of the photon
spectra are obtained, which can be compared to experimentalresults.

In the present chapter we will discuss in detail the status and problems of calcu-
lating production rates of direct photons from a thermal QGPand hadron gas as
well as from hard scatterings in the initial non-equilibrium stage. In addition, the
various hydrodynamical approaches and their applicationsto photon spectra will
be critically reviewed.

2.1 Photon Production Rates

In this Section the calculation of the production rates of direct photons with exper-
imentally relevant energiesE ≫ T from a thermal QGP, a hot hadron gas (HHG)
and of prompt photons from the initial phase will be considered. Since direct pho-
tons have been proposed as a promising signature of the QGP formation in relativis-
tic heavy-ion collisions [15–22], emphasis is put on the photon production from the
QGP and the calculation of this rate will be discussed first indetail.

Particle production rates can be computed from the amplitudes of the basic pro-
cesses for the particle production, convoluted with the distribution functions of the
participating particles [23]. For example, the productionrate of a particleA with
energyE follows from

Γprod(E) =
1

2E

∫

d3p1

(2π)32E1

...
d3pm

(2π)32Em

d3p′1
(2π)32E ′

1

...
d3p′n

(2π)32E ′
n

(2π)4 δ(P −
m
∑

i=1

Pi +
n
∑

i=1

P ′
i )
∑

i,j

|M|2 f1...fm (1 ± f ′
1)...(1 ± f ′

n). (1)

HereM is the matrix element of the basic process for the productionof parti-
cle A, wherem particles participate in the initial andn particles (denoted by a
prime) in the final channel.

∑

i,j indicates the sum over all states of the particles
in the initial and final states except of the particleA, andP , Pi, andP ′

j are the
4-momenta of the particles.fi denotes the distribution functions of the incoming
particles andf ′

j of the outgoing ones (except ofA). For outgoing bosons, the plus
sign holds, corresponding to Bose-enhancement, whereas for fermions the minus
sign, corresponding to Pauli-blocking. In an equilibratedsystem, such as the QGP
or the HHG, the distribution functions are given by Bose-Einstein or Fermi-Dirac
distributions, respectively. In high-energy particle physics, such as the production
of prompt photons inpp collisions, the parton structure functions are taken.
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2.1.1 Thermal Rates from the QGP

A QGP emits photons as every thermal source does. The microscopic process is the
photon radiation from quarks having an electric charge. Dueto energy-momentum
conservation, these quarks have to interact with the thermal particles of the QGP in
order to emit a photon. Hence, an ideal, non-interacting QGPcannot be seen. How-
ever, there will always be (strong and electromagnetic) interactions in the QGP,
such as quark-antiquark annihilation. However, due to energy-momentum conser-
vation the direct annihilation of quarks and anti-quarks into real photons is also
not possible but only into virtual photons which can decay into lepton pairs. The
production of dileptons is another promising signature forthe QGP [24], which,
however, is not the topic of the present review. To lowest order perturbation theory,
real photons are produced from the annihilation of a quark-antiquark pair into a
photon and a gluon (qq̄ → gγ) and by absorption of a gluon by a quark emitting
a photon (qg → qγ), similar to Compton scattering in QED (see Fig. 1). A higher
order process for the photon production is, for example, bremsstrahlung, where a
quark radiates a photon by scattering off a gluon or another quark in the QGP.

qq

γ q

g

γ γq

g

Fig. 1. Lowest order contributions to photon production from the QGP: Compton scattering
(left) and quark-antiquark annihilation (right).

The photon production rate can be computed from the matrix elements of these
basic processes by convoluting them with the distribution functions of the partici-
pating partons according to Eq. (1). In the case of processeswith two partons in
the initial and one in the final channel, such as annihilationand Compton scattering
discussed above, the differential photon production rate is given by [25]

dN

d4xd3p
=

1

(2π)32E

∫

d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3
n1(E1)n2(E2)[1 ± n3(E3)]

∑

i

〈|M|2〉 (2π)4 δ(P1 + P2 − P3 − P ). (2)

HereP1 andP2 are the 4-momenta of the incoming partons,P3 of the outgoing par-
ton, andP of the produced photon. Throughout the paper we use the notationP =
(p0,p) andp = |p|, which is convenient in thermal field theory. For on-shell par-
ticles, the energy is denoted byp0 = E. In equilibrium, the distribution functions
ni(Ei) are given by the Bose-Einstein distribution,nB(Ei) = 1/[exp(Ei/T ) − 1],
for gluons and by the Fermi-Dirac distribution,nF (Ei) = 1/[exp(Ei/T ) + 1], for
quarks, respectively. The factor[1±n3(E3)] describes Pauli-blocking (minus sign)
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in the case of a final-state quark or Bose-enhancement (plus sign) in the case of
a final-state gluon. The factor〈|M|2〉 is the matrix element of the basic process
averaged over the initial states and summed over the final states. The

∑

i indicates
the sum over the initial parton states. The delta function, as usual, ensures energy-
momentum conservation. The formula Eq. (2) can be extended easily to higher or-
der processes, by integrating over the momenta of the additional external partons,
taking into account also their distribution functions. Thedifferential rate, defined
above, determines the number of emitted photons with momentum p within the
interval [p,p + d3p] and energyE = p from the space-time volumed4x. The total
rate follows from integrating over the photon momentum. Theobservable spectrum
is obtained by integrating over the space-time volume, by using for instance a hy-
drodynamical model, describing the space-time evolution of the expanding QGP.
The total photon yield results from an integration of the spectrum over the photon
momentum.

An alternative definition of the differential photon production rate is based on the
polarization tensor or photon self-energy. According to cutting rules extended from
vacuum quantum field theory to finite temperature [23,26,27], the differential rate
can be related to the imaginary part of the polarization tensor Πµν(P ) on its mass
shell (p0 = E = p) [28]

dN

d4xd3p
= − 1

(2π)3

1

E

1

exp(E/T ) − 1
Im Πµ

µ(E). (3)

This expression is exact to first order in the electromagnetic couplingα and to
all orders in the strong coupling constant4 αs = g2/4π. Therefore, it contains in
contrast to the definition Eq. (2), which holds only for2 → 2 reactions, also higher
order processes like bremsstrahlung if the photon self-energy is chosen accordingly.
The lowest order annihilation and Compton processes correspond to a polarization
tensor containing one quark loop and one internal gluon lineas shown in Fig. 2.
Cutting these diagrams reproduces the processes of Fig. 1 inan illustrative way.

Now we will discuss the various attempts for calculating theproduction rate of
energetic photons (E ≫ T ) from an equilibrated QGP.

Pre-HTL rate:Before the invention of the Hard-Thermal-Loop (HTL) improved
perturbation theory (see below), the QGP photon rates have been calculated using
the perturbative matrix elements for the processes of Fig. 1together with Eq. (2)
[15,16,20,22]. In Ref.[20], even bremsstrahlung has been considered in this way.
The derivation of the differential production rate of energetic photons (E ≫ T ),

4 The strong coupling constant at finite temperature depends on the temperature (effective,
temperature-dependent running coupling constant) [29]. However, for most applications in
the following we will use a mean value ofαs = 0.2 - 0.5, which is typical for temperatures
reachable in relativistic heavy-ion collisions.
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Fig. 2. 2-loop polarization tensor. The dashed lines indicate cuts through the diagrams,
corresponding to the processes in Fig. 1.

produced by the processes of Fig. 1, is presented in AppendixA. In the case of two
thermalized quark flavors with bare massm0 it is given by [25]

dN

d4xd3p
=

5

18π2
α αs

T 2

E
e−E/T ln

ET

m2
0

, (4)

whereET ≫ m2
0 has been assumed.

It was noted that there is a logarithmic infrared (IR) sensitivity, i.e. the rate di-
verges logarithmically if the mass of the exchanged quark inFig. 1 tends to zero.
Therefore, Kajantie and Ruuskanen argued [18] that the barequark mass should
be replaced by an effective thermal quark mass. This means that even the pro-
duction of energetic photons is sensitive to in-medium effects of the QGP, since
the exchange of soft quarks plays an important role in the production mecha-
nism. A systematic treatment of in-medium effects is provided by the HTL re-
summation technique, discussed below. Kajantie and Ruuskanen [18] used an ef-
fective, temperature-dependent quark mass calculated from the quark self-energy
in the high temperature limit as discussed in Appendix B. Theresult is [30,31]:
m2

q = g2T 2/6. For g = 1.5 - 2.5 corresponding to realistic valuesαs ≃ 0.2 - 0.5,
one getsmq = 0.6 - 1.0 T . For typical temperatures of the QGP, e.g.T = 200 MeV,
the effective quark mass is much larger than the bare mass of up and down quarks
(mu,d ≃ 5 - 10 MeV) and of the same order as the bare strange quark mass. Hence,
neglecting in-medium effects, i.e. adopting the bare instead of the effective quark
mass in Eq. (4), leads to an overestimation of the rate. In theweak coupling limit,
in which perturbation theory holds, the logarithm in Eq. (4)has to be replaced now
by ln(E/αsT ), neglecting a constant of the order of 1. As we will see below,using
the HTL technique, this result is the leading logarithm approximation for the rate.

1-loop HTL rate:Using only bare propagators (and vertices) as in Fig. 1 or Fig. 2
for gauge theories (QED, QCD) at finite temperature, problems such as IR divergent
and gauge dependent results are encountered. A famous example is the so-called
plasmon puzzle: the damping rate of a gluon with a long wavelength or small mo-
mentum in a QGP, called plasmon, has been calculated in different gauges and dif-
ferent results have been found. In particular, in covariantgauges a negative result
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was obtained, indicating a puzzling instability of the QGP in perturbation theory
[32]. Braaten and Pisarski [33] argued that naive perturbation theory, using only
bare propagators (and vertices), is incomplete at finite temperature. Higher-order
diagrams, containing infinitely many loops, can contributeto the same order in the
coupling constant. These diagrams can be taken into accountby resumming a cer-
tain class of diagrams, the hard thermal loops (HTLs). Thesediagrams are 1-loop
diagrams (self-energies and vertex corrections), where the loop momentum is hard,
i.e. of the order of the temperature or larger. This approximation agrees with the
high-temperature limit of these diagrams, which has been computed already some
time ago in the case of the gluon and quark self-energy [30,31,34]. Resumming
these self-energies within a Dyson-Schwinger equation leads to effective gluon and
quark propagators, which describe the propagation of collective gluon and quark
modes in the QGP. These effective propagators (and similar effective vertices) have
to be used if the momentum of the propagator is soft, i.e. of the ordergT . Other-
wise a bare propagator is sufficient. In this way, gauge invariant results for physical
quantities are obtained and their IR behavior is improved. In the case of the plasmon
damping rate, Braaten and Pisarski derived a positive, gauge independent result by
using HTL-resummed gluon propagators and vertices [35]. Itis important to note,
that the HTL-resummation technique relies on the weak coupling limit assumption,
g ≪ 1, which allows the separation of the soft scalegT and the hard scaleT . The
HTL-resummed perturbation theory is exemplified in Appendix B, where the pho-
ton production rate is calculated in this way. For a review ofthe HTL-method and
its application see [36–39].

Fig. 3. Photon self-energy containing a HTL-resummed quarkpropagator indicated by the
filled circle. The energy and momentum of the resummed quark propagator are soft, i.e.
smaller than the separation scaleqc, whereas the other quark momentum is hard due to
energy-momentum conservation in the case of hard photons.

In the case of massless quarks, the hard photon production rate from the QGP
is logarithmically IR divergent due to the exchange of a massless quark, as dis-
cussed above. Therefore, the bare quark propagator has to bereplaced by a HTL-
resummed one, defined in Fig. 43 of Appendix B. According to the rules of the
Braaten-Pisarski method, this has to be done for soft quark momenta. Therefore,
we decompose the rate in a soft and a hard contribution, introducing a separation
scale for the quark momentumgT ≪ qc ≪ T [40]. For the soft contribution,
we start from Eq. (3) and use the diagram shown in Fig. 3 as polarization tensor.
This 1-loop diagram has a non-vanishing imaginary part since the effective quark
propagator contains an infinite number of loops (see Fig. 43). Cutting this diagram
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through the filled circle reproduces the diagrams shown in Fig. 1, where the bare
quark propagator is replaced by a resummed one. It is not necessary to dress both
propagators or to use an effective quark-photon vertex5 since only one internal
quark line can be soft due to energy-momentum conservation in the case of hard
photons. The hard contribution follows from the pre-HTL result, replacing the bare
quark mass by the separation scaleqc (see Appendix A). The details of these calcu-
lations are presented in Appendix B. Adding up the soft and the hard contribution,
the separation scale cancels. In this way Kapusta et al. [25]and independently Baier
et al. [41] found

dN

d4xd3p

∣

∣

∣

∣

1−loop
= a ααs e

−E/T T 2

E
ln

0.2317E

αsT
, (5)

wherea = 0.0281 for NF = 2 thermalized quark flavors anda = 0.0338 for
NF = 3, respectively. The result has been extended to finite baryondensity by gen-
eralizing the HTL-resummation technique to finite quark chemical potential [42]. It
is interesting to note that for finiteµ one has to give up the Boltzmann approxima-
tion for the initial parton distributions in the hard contribution (see Appendix B).
Otherwise there is no cancellation of the separation scale after adding the hard and
the soft part. Therefore, the photon production rate at finite µ can be determined
only numerically. For|µ/T | < 1, the factorT 2 in Eq. (5) has to be replaced to a
good accuracy simply byT 2 + µ2/π2 [43].

The 1-loop HTL photon production rate has also been calculated for a chemically
non-equilibrated QGP [44–48], as discussed at the end of Section 2.2.1.

2-loop HTL rate:Naively one expects that higher order diagrams such as brems-
strahlung will contribute only to orderαα2

s. However, recently Aurenche et al. [49]
showed that the 2-loop HTL contribution to the hard photon production rate is of
orderααs, i.e. contributes to Eq. (5) beyond the leading logarithm approximation.
In the following, we will only sketch the arguments without presenting the calcula-
tion in detail.

The 1-loop HTL contribution of Fig. 3 to the hard photon production rate corre-
sponds to the exchange of a soft, collective quark. The logarithmic IR singular-
ity in the case of massless bare quarks is cut off by medium effects (in-medium
quark “mass”) of the ordergT . The complete second order HTL rate follows from
adding the 1-loop HTL contribution for soft quarks and the 2-loop diagram of Fig.
2, where the intermediate quark is hard. Note that in Fig. 2 weassumed that the
gluon is also hard, i.e., it is a thermal particle with an average energy of the or-
der T . However, if this gluon is soft, there will be a Bose enhancement factor

5 The energetic photon resolves the quark-photon vertex rendering a vertex correction un-
necessary.
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nB(k0 ∼ gT ) ≃ T/k0 ∼ 1/g. Hence, this contribution might be important. Ac-
cording to the HTL resummation method, we therefore have to dress the gluon in
Fig. 2, i.e., to use a HTL-resummed gluon propagator as in Fig. 4.

Fig. 4. 2-loop HTL polarization tensor containing a HTL resummed gluon propagator indi-
cated by a filled circle. The dashed lines indicate cuts through the diagrams, corresponding
to the processes in Fig. 5.

One contribution to the imaginary part of these diagrams comes from cutting through
the filled circle of the effective gluon propagator, i.e. from the imaginary part of the
gluon self-energy of the effective gluon propagator corresponding to Landau damp-
ing of the time-like gluon (see Appendix B). Since the HTL gluon self-energy con-
tains hard quark and gluon loops, physical processes contained in the imaginary
part of Fig. 4 are bremsstrahlung and annihilation with scattering as shown in Fig.
5.

Naively one expects that these diagrams lead to a rate that isreduced by a factor of
g2 compared to the 1-loop HTL rate Eq. (5) due to the additional vertex. However,
caused by a strong collinear IR singularity it turns out thatIm Πµ

µ ∼ e2g4 has to
be multiplied by a factorT 2/m2

∞. Herem2
∞ = 2m2

q = g2T 2/3 is the asymptotic
thermal quark mass which cuts off the IR singularity in the diagrams of Fig. 56 .
Hence, the contribution to the photon rate from Fig. 4 is of the same ordere2 g2 as
the one from Fig. 2. This is a typical problem of perturbativefield theory at finite
temperature, where due to medium effects higher-order diagrams can contribute to
lower order in the coupling constant. For further examples see e.g. Ref.[37].

Now we present the final result of the tedious 2-loop HTL calculation of the pro-
duction rate of energetic photons (E ≫ T ) [49]. In the case of bremsstrahlung, it
reads

dN

d4xd3p

∣

∣

∣

∣

brems
= b ααs e

−E/T T 2

E
, (6)

whereb = 0.0219 for NF = 2 and b = 0.0281 for NF = 3, respectively. The

6 Although the IR singularity in Fig. 5 is related to the exchange of the gluon, it vanishes
due to a thermal quark mass [50]. The asymptotic quark mass enters the calculation if a
resummed instead of a bare quark propagator is used in Fig. 4.
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q

g

γ

q

q ,

q

g,q

γ

Fig. 5. Photon production processes corresponding to the 2-loop HTL contribution:
bremsstrahlung (left) and annihilation with scattering (right). The filled circles indicate
HTL resummed gluon propagators. The lower line indicates either a quark or a gluon.

annihilation with scattering (aws) in Fig. 5 leads to

dN

d4xd3p

∣

∣

∣

∣

aws
= c ααs e

−E/T T, (7)

wherec = 0.0105 for NF = 2 andc = 0.0135 for NF = 3, respectively7 . The
constantsb and c had to be computed numerically. Comparing Eqs. (6) and (7)
with Eq. (5), we observe that the 2-loop HTL rate is of the sameorder as the 1-
loop HTL rate apart from a factorln(1/αs), which comes from the thermal quark
mass playing the role of an IR cutoff in the 1-loop HTL contribution. Moreover, the
annihilation-with-scattering process is due to phase space proportional toT instead
of T 2/E as in the case of the Compton scattering, annihilation without scattering,
and bremsstrahlung. Hence, that contribution dominates atlarge photon energies.
In Fig. 6 the various contributions to the rate are compared at two different tem-
peratures,T = 150 MeV andT = 200 MeV [51], where a temperature dependent
coupling constantαs(T ) = 6π/[(33 − 2NF ) ln(8T/Tc)] with Tc = 170 MeV has
been adopted [29]. Although the extrapolation of the HTL-results obtained in the
limit g ≪ 1 to realistic values of the coupling constant (αs ≃ 0.3) is doubtful,
one sees the relative importance of the individual contributions. In particular one
observes the dominant role of the annihilation-with-scattering contribution above
E = 1 GeV.

The 2-loop HTL rate has also been generalized to chemical non-equilibrium [52,53]
but not to a finite chemical potential (finite baryon density)so far.

Higher-order contributions:Since 2-loop HTL contributions are as important as
1-loop HTL contributions, what about higher-loop diagrams? Aurenche et al. [54]
have also investigated this question looking at 3-loop HTL diagrams like the one in

7 In Ref.[49] a numerical error led to an overestimation of therate by a factor of 4 [51].
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Fig. 7. Using power counting one can show that the 3-loop diagram is proportional
to the 2-loop diagram times a factorg2T/µ, whereµ is the IR cutoff for the ad-
ditional exchanged gluon. In the case of a transverse gluon this cutoff is provided
by the non-perturbative magnetic mass of the orderg2T . Hence, the 3-loop con-
tribution is of the same order as the 2-loop. This argument isessential the same
that has been used by Linde [55] for showing the break-down ofperturbation the-
ory for QCD at finite temperature. However, the power counting argument is too
restrictive since there are cancellations of IR singularities between different cuts of
the diagram according to the Kinoshita-Lee-Nauenberg theorem [56,57]. Indeed,
the sum over the different cuts generates a kinematical cutoff. However, this cutoff
becomes smaller than the non-perturbative magnetic cutoffif the virtuality of the
photon is small. In particular, for real photons the rate is always sensitive to the
magnetic cutoff. Hence, the production rate of real photonscannot be evaluated
within perturbation theory. Infinitely many higher order diagrams contribute to the
same order,ααs, as the 2-loop HTL diagram. For dileptons with an invariant mass
larger thang2T , on the other hand, the Kinoshita-Lee-Nauenberg cutoff becomes
relevant and their rate can be accessed perturbatively in the weak coupling limit.

Although there are additional contributions of the same order to the rate compared
to the 1- and 2-loop HTL contributions, the 1- and 2-loop HTL rate cannot be
used as a lower limit for the photon production rate, for there are also destructive
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Fig. 7. Example for a 3-loop HTL polarization tensor.

interferences in the higher-order contributions. They lead to a process known as
the Landau-Pomeranchuk-Migdal (LPM) effect which resultsin a suppression of
the photon emission. Loosely spoken, a photon will not be emitted if there is not
enough time for its production before the radiating quark will be scattered off an-
other particle. The production time can be estimated from the uncertainty principle
while the time between two successive collisions follows from the mean-free path
of the quark in the QGP. As an example the bremsstrahlung froma quark between
two scatterings is shown in Fig. 8. The LPM effect has been predicted in QED by
Landau and Pomeranchuk [58] and Migdal [59] a long time ago and recently been
confirmed experimentally at SLAC in the suppression of bremsstrahlung in thick
targets [60,61]. Generalized to non-abelian gauge theories, it also plays an impor-
tant role in the energy loss of energetic partons in the QGP and the associated jet-
quenching [62]. Assuming for simplification a constant, energy-independent damp-
ing rate or width for the quark, Aurenche et al. [63] estimated the LPM-effect in the
photon production from the QGP. They showed that for bremsstrahlung only low-
energy photons, typically with energies below 100 MeV are strongly affected (see
also [64]), whereas in the annihilation-with-scattering case surprisingly only high
energy photons (E > 10 GeV) are strongly suppressed. In the interesting energy
regime of a few GeV the influence of the LPM-effect seems not tobe very impor-
tant. A verification of this statement, however, requires a thorough consideration of
the LPM-effect for the photon production, going beyond the simplified calculation
of Aurenche et al. [63].8

Considering a possible suppression of the photon production from the QGP by the
LPM-effect and a possible enhancement by other higher-order contributions, the
sum of the 1- and 2-loop HTL rate has been used as an educated guess. Moreover,
one has to keep in mind that these rates have been derived under the unrealis-
tic assumption ofg ≪ 1, which renders their applicability even more dubious.
Since non-perturbative methods such as lattice QCD do not allow the calculation
of dynamical quantities, e.g. particle production rates, at the moment, this estimate
appears to be the state of the art. It might be possible in the future that lattice calcu-
lations will be capable to extract non-perturbative information also for production

8 Recently, Arnold, Moore, and Yaffe claimed that a rigorous treatment of the LPM-effect
by summing ladder diagrams leads to an infrared finite resultwhich is sensitive only to the
scalegT [65]. They found that forαs = 0.2 and2.5 ≤ E/T ≤ 10 the complete leading
order rate agrees within a factor of 2 with the 1-loop HTL result (5) [66].
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Fig. 8. Multi-scattering bremsstrahlung affected by the LPM-effect.

rates using the maximum entropy method [6]. Such information would be of utmost
importance, not only for the photon production but basically for all signatures of
the QGP formation.

2.1.2 Thermal Rates from the Hadron Gas

In order to calculate the photon spectrum and yield from the fireball in relativistic
heavy-ion collisions, one has to know also the photon production rate from the
HHG since photons will also be emitted from this thermal phase following the QGP.
Furthermore, the prediction of the photon production from the HHG is necessary if
one wants to use the photon spectrum as a signature for the QGP. For this purpose,
one has to compare the photon spectrum with and without phasetransition, i.e., in a
hydrodynamical model one has to consider equations of state(EOS) describing, on
the one hand, a QGP, mixed, and HHG phase and, on the other hand, a pure HHG
phase.

The microscopic description of the thermal photon emissionfrom the HHG is based
on the interactions between hadrons in the heat bath. Due to vector meson domi-
nance (VMD), vector mesons (ρ, a1) play an important role for the photon produc-
tion. Furthermore, in particular pions and etas decay into photons. However, since
these processes take place predominantly after freeze-out, these decay photons
are subtracted from the experimentally observed spectrum as a huge background
(signal to background ratio about 20%) for obtaining the direct photon spectrum.
Hence, we will not consider hadronic decays into photons after freeze-out in the
following.

In contrast to the QGP, which can be treated within QCD, one has to adopt effec-
tive theories for the hadron interactions. Effective theories contain a certain number
of hadron species, whose interactions are determined by symmetry and simplicity
arguments. The first calculation of the photon production from the HHG has been
performed by Kapusta, Lichard, and Seibert, [25]. They considered a baryon-free
HHG (zero chemical potential) consisting out of pions, which are the most abun-
dant hadronic constituents due to their small mass, and rhos, which are important
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for photon emission because of VMD. They started from an effective Lagrangian
describing the interaction between charged pions, coupledto photons, and neutral
rhos

L = |DµΦ|2 −m2
π |Φ|2 − 1

4
ρµνρ

µν +
1

2
m2

ρ ρµρ
µ − 1

4
FµνF

µν . (8)

HereDµ = ∂µ − ieAµ − igρρµ is the covariant derivative,Φ is the complex pion
field, andρµ is the rho field.ρµν = ∂µρν − ∂νρµ is the field-strength tensor of the
rho field andFµν = ∂µAν − ∂νAµ the one of the electromagnetic field. The pion-
rho coupling constantgρ is determined from the decay rate of the processρ→ ππ,
yieldingg2

ρ/(4π) = 2.9.
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Fig. 9. Photon production from pions and rhos.

The lowest order processes from this effective theory are pion annihilation,π+π− →
ργ, “Compton scattering”π±ρ → π±γ, andρ-decay,ρ → π+π−γ, as shown in
Fig. 9. Kapusta, Lichard, and Seibert have also considered the processesπ+π− →
ηγ, π±η → π±γ, π+π− → γγ, andω → π0γ. Apart from the last all these pro-
cesses are suppressed compared to the ones of Fig. 9 by at least an order of mag-
nitude. The decayω → π0γ dominates over the rho meson decay above a photon
energy ofE = 0.5 GeV. However, the contribution from theω-decay to the photon
production, following from an extrapolation frompp collisions, has also been sub-
tracted from the experimental data [67]. Hence, theω-decay contribution is taken
into account only partly in the spectra presented by WA98.

The matrix elements of the processes shown in Fig. 9 and of theother processes,
discussed above, have been listed, e.g. in Ref.[68,69]. Folding them with the hadron
distribution functions, similar as in Eq. (2), the photon production rate correspond-
ing to these processes from a HHG has been evaluated numerically. Note that many
of the involved mesons are rather short-living, such as the rho meson. Therefore,
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one should use modified distributions for unstable particles [70]. However, it has
been shown that the influence of a finite width of the rho meson has a negligible
effect on the photon production rate [68].

Parametrizing the numerical results, the following closedexpressions have been
given for the various rates following from Fig. 9 [71]

E
dN

d4xd3p

∣

∣

∣

∣

ππ→ργ
=0.0717 T 1.866 exp(−0.7315/T + 1.45/

√
E − E/T ),

E
dN

d4xd3p

∣

∣

∣

∣

πρ→πγ
=T 2.4 exp[−1/(2TE)3/4 − E/T ],

E
dN

d4xd3p

∣

∣

∣

∣

ρ→ππγ
=0.0785 T 4.283 E−2.976+0.1977/T exp(−E/T ). (9)

Here the temperatureT and photon energyE are to be given in GeV, and the in-
variant rate then has dimensions of fm−4 GeV−2. These expressions are accurate
compared to the numerical results to at least 20% in the range100 MeV< T <
200 MeV and 0.2 GeV< E < 3 GeV.

Comparing the HHG rate at a temperature ofT = 200 MeV to the 1-loop HTL
rate Eq. (5), it was found that both rates have a very similar shape and magnitude.
Hence, Kapusta, Lichard, and Seibert concluded that “the hadron gas shines just as
brightly as the quark-gluon plasma” [25]. This coincidencebetween the rates of the
two different phases has also been related to the “quark-hadron duality” [72,73].
However, as we have discussed already above, the QGP photon rate is enhanced by
2-loop HTL corrections and the influence of higher-order corrections is unknown.
Also the HHG photon rate is changed by including further processes and particles,
in particular thea1 vector meson, as we will discuss below. Therefore the agreement
of both rates might be a mere coincidence. We will come back tothis point below.

After this first calculation of the photon emission from the HHG, Xiong, Shuryak
and Brown [74] found that the processπρ → πγ is significantly enhanced if an
intermediatea1 resonance state is taken into account. A parametrization ofthe nu-
merical result for this contribution reads

E
dN

d4xd3p

∣

∣

∣

∣

πρ→a1→πγ
[fm−4GeV−2] = 2.4 T 2.15 exp[−1/(1.35TE)0.77 −E/T ]. (10)

Although thea1 contribution in Ref.[74] has been overestimated9 by a factor of 4,

9 Xiong, Shuryak and Brown [74] proposed an effective Lagrangian for the interaction
between thea1-, the ρ-, and theπ-mesons. The coupling constant was determined from
the decay width of thea1. However, it was overestimated since the full width insteadof
the partial width was assumed for each isospin channel in thephoton production via the
a1-resonance. This error led to an overestimation of the rate by a factor of 4 [75].
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the total photon rate is enhanced by about a factor of 2 due to this contribution.

The role of thea1 meson on the photon production has been studied further starting
from effective chiral Lagrangians [76,77]. In this way other processes, in which
thea1 participates, and interference effects have been included. This leads to a fur-
ther enhancement of the rates. However, the final result depends crucially on the
specific form of the Lagrangian and the choice of its parameters, which cannot be
fixed unambiguously [24,76]. Therefore, the final photon rate from the HHG can
easily vary by a factor of about 3 depending on the assumptions of the effective
theory used [24,76]. An alternative, more model independent approach, based on
constraints from data (electro production, tau decay, radiative pion decay, 2-photon
fusion) and general arguments (broken chiral symmetry, current conservation, uni-
tarity) [78–80] indicates a somewhat larger photon production compared to most
estimates from using effective chiral Lagrangians.

As a simple estimate the following expression for the HHG photon production rate
has been suggested [51]10

E
dN

d4xd3p
[fm−4GeV−2] ≃ 4.8 T 2.15 e−1/(1.35ET )0.77

e−E/T . (11)

Alternatively the sum of the rates from Ref.[71,76] - the rates in Ref.[76] are not
given analytically - can be used. Both approximations for the HHG rate agree at
least within the uncertainties, discussed below, for relevant temperatures between
100 and 200 MeV and photon energies of interest between 1 and 4GeV (see Fig.
10).

In Fig. 11 the thermal photon rate from the QGP Eqs. (5), (6), and (7) and the
hadron gas Eq. (11) at the same temperature are compared. Note that the rates from
the two phases agree approximately atT = 150 MeV, but not at 200 MeV. The
approximate agreement of the QGP and the HHG rate atT = 150 MeV appears to
be accidental as the energy and temperature dependence of the HHG rate Eq. (11),
obtained from fitting numerical results, and of the QGP rate Eqs. (5), (6), and (7),
derived in the weak coupling limit, are different.

Recently, also the role of in-medium effects of vector mesons in the HHG on the
photon production has been investigated [68,69,81,82]. For a review on this sub-
ject see Ref.[11]. The results depend on the model used for implementing medium
effects on hadrons. Whereas the change of the width appears to be rather unim-
portant for the photon production rate [68], changes in the mass of the vector and
axial vector mesons could have significant consequences. Inparticular, many mod-
els predict a dropping vector meson mass with increasing temperature and baryon

10 This expression is identical with the one given by Xiong et al. [74] for thea1 contribution
multiplied by a factor of 2 in order to take into account the contributions from Ref.[25] and
Ref.[76].
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Fig. 10. Comparison of the pocket formula Eq. (11) for HHG photon production rates
(dashed line) with the rates derived by Kapusta and Song (solid line) at T = 100, 150,
200 MeV.

density, such as Brown-Rho scaling [83]. The reduction of the ρ anda1 masses
in the HHG is expected to cause an enhancement of the photon production rate.
Song and Fai [82] predicted an enhancement of the rate by an order of magnitude,
whereas Sarkar et al. [68] found only an enhancement by a factor of 3. Halász et
al. [81], on the other hand, found a reduction of thea1-contribution to the photon
production by a factor 2 - 3 compared to scenarios without in-medium modifica-
tions of the masses [74,76,77]. Their conclusion is based onusing the Hidden Local
Symmetry model [84], in which there is a linear relation between the coupling and
the vector meson masses. Hence, a reduced mass leads to smaller coupling which
suppresses the photon rate. The photon production rate obtained in this way lies
between the one found by Kapusta et al. [25] and the one of Song[76]. However,
it is not clear whether this reduction of thea1 contribution by medium effects is a
physical effect or caused by the particular choice of the effective Lagrangian [81].

The radiative decay of the axial vector mesons,a1 → πγ, b1 → ππ0γ, andK1 →
Kγ has been discussed by Haglin [85]. These contributions appear to be impor-
tant, i.e. comparable to theπρ → πγ and theππ → ργ contributions, for photon
energies below 1.5 - 2 GeV and to be dominant forE < 1 GeV.

In the analysis of the photon emission rate from a HHG, based on constraints of
data and general arguments (see above) by Steele, Yamagishi, and Zahed [78], also
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Fig. 11. Comparison of the photon production rate from the QGP and the hadron gas at
T = 150 and 200 MeV (NF = 2) [51].

a finite pion chemical potential describing a dilute pion gas, i.e. a deviation from
chemical equilibrium, has been taken into account. Assuming µπ = 100 MeV, an
enhancement of the photon production rate by about a factor of 2 compared to an
equilibrated pion gas at the same temperature has been observed [78]. Furthermore,
a finite baryon density corresponding to the presence of nucleons, as it is the case
at SPS, has been shown to increase the rates further by about afactor of 1.5 below
E = 1.5 GeV [79]. The influence of strange mesons (η, Φ, K) included in this
investigation turned out to be negligible for the photon rate [80].

Finally, let us mention, that bremsstrahlung from the HHG seems to affect only the
photon production rate at small energies below about 100 MeV[86,87].

Summarizing, there are still significant uncertainties in the photon production rate
from the HHG in spite of intense effort during the last ten years. The photon pro-
duction rate of the HHG is at best known up to a factor of 3. Within this uncertainty
it appears to be of the same magnitude as the 2-loop HTL resultfor the photon
rate from the QGP in the relevant temperature regime. This statement is sometimes
associated with the quark-hadron duality hypothesis [72,73]. However, even if the
QGP and the HHG rates are similar, the QGP might be distinguishable from the
hadron gas in the photon spectrum due to a different space-time evolution of the
two phases as discussed below.
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2.1.3 Prompt Photons

Besides thermal emission of photons from the QGP and the HHG there is another
source for direct photons coming from hard parton collisions in the initial non-ther-
mal stage of the heavy-ion collisions. These so-called prompt photons have to be
subtracted as well as the thermal HHG photons for identifying the QGP radiation.
On the other hand, prompt photons in heavy-ion collisions may contain interesting
information on nuclear effects on the parton distributions. As a matter of fact, an
enhancement in the pion and photon production inpA collisions compared to re-
sults from a simple scaling frompp collisions has been observed experimentally.
This nuclear effect, also called Cronin effect [88], is mostrelevant at transverse
momenta between 3 and 6 GeV [89]. There are also indications for a nuclear en-
hancement in the WA98 data abovepT ≃ 2.5 GeV [90].

The production rate of prompt photons from hard parton scatterings can be com-
puted similarly as the QGP rate. The amplitudes of the basic processes (Compton
scattering, quark-antiquark annihilation, and bremsstrahlung) are folded with the
parton distributions. The thermal distribution functionshave now to be replaced by
the parton distributions in the nuclei.

Let us first considerpp collisions. Assuming the QCD factorization theorem, the
photon production cross section for the processpp → Xγ is given by (see e.g.
[91])

E
dσ

d3p
=
∑

abc

∫

dxadxb fa(xa, Q) fb(xb, Q)K
s

π

dσ

dt
(ab→ cγ) δ(s+ t+ u), (12)

wherefi are the parton distribution functions in the nucleons, depending on the
parton momentum fractionxi and the factorization scaleQ, anddσ/dt is the dif-
ferential cross section for the elementary parton process (ab → cγ), e.g. Compton
scattering, with the Mandelstam variabless, t, andu. The sum extends over all
possible parton states andK ≃ 2 is a phenomenological factor taking account of
next-to-leading order effects. The integrals in Eq. (12) are performed numerically
using Monte-Carlo techniques.

In order to explain the experimental data [92], two different approaches have been
employed. The first approach is based on next-to-leading order calculations of the
cross sections, where the renormalization scaleΛQCD and the factorization scaleQ
are determined in a way to optimize the agreement between theory and experiment
[93]. This method has been improved further on by using a soft-gluon resummation
and considering next-to-next-to-leading order corrections [94].

The second approach uses non-optimized scales but introduces a phenomenologi-
cal, non-perturbative effect in the parton distribution, namely a transverse momen-
tum distribution of finite width, called intrinsickT [95–97]. For this purpose the
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parton distribution functionsdxifi(xi, Q) are replaced bydxid
2kT ifi(xi, Q)g(kT i),

wherekT i is the transverse parton momentum of the parton in the nucleon. Then
one has to integrate additionally overkT i in Eq. (12). The transverse momentum
distribution is usually approximated by a Gaussian

g(kT ) =
e−k2

T
/〈k2

T
〉

π 〈k2
T 〉

, (13)

where the average square of the intrinsic transverse momentum of the parton in
the initial state,〈k2

T 〉, is a tunable parameter. Using the uncertainty principle for

the partons confined in the nucleon with radiusrN one finds
√

〈k2
t 〉 ≈ π/2rN ≈

0.37 GeV [90]. However, this value is too small to explain the data, which requires
〈k2

T 〉 = 1 - 1.5 GeV2 [90,97].

IntrinsickT can also be caused by multiple gluon radiation [98], which makes〈k2
T 〉

energy dependent [99]. IntrinsickT has also been applied successfully to explain
muon, jet, and hadron production inpp collisions at Tevatron, such asπ0- andJ/ψ
production [99]. The cross section for photon production isexpected to be increased
by a factor of 3 to 8 by intrinsickT [100]. Further improvement of fitting the data
can be achieved by allowing for aK-factor dependence on the collision energy and
photon momentum [100,101].

Summarizing the status of prompt photons inpp collisions, we quote Ref.[102]:
”Despite many years of intense experimental and theoretical efforts, the inclusive
production of prompt photons in hadronic collisions does not appear to be fully
understood.”

New effects and further uncertainties arise in the extrapolation of the prompt pho-
ton production rate frompp to pA and heavy-ion collisions. The photon spectrum
E dN/d3p for prompt photons inpA andAA collisions follows from the cross
section forpp collisions Eq. (12) by introducing a nuclear thickness function and
integrating over the impact parameter [90,99]. Nuclear effects on the parton dis-
tributions are expected to play an important role. For example, an additionalkT

broadening from soft nucleon collisions in the nucleus prior to the hard collision
(Cronin effect) has been predicted [99]. Nuclear broadening has been observed, e.g.
in the dimuon production inpA collisions [103]. It also allows an understanding of
theπ0 production at SPS [104,105]. Furthermore, it can lead to a strong enhance-
ment of the prompt photon cross section inAA collisions, because a part of the
photon momentum can be supplied by the incoming partons [90].

Other nuclear effects, which might play a role, are the parton energy loss and nu-
clear shadowing [106]. They are expected to lead to a suppression of the prompt
photon cross section of about 30% at RHIC energy. At SPS energies, on the other
hand, a small enhancement of the photon production by antishadowing is expected
[90].
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Finally, a significant contribution (“strong flash of photons”) to the photon produc-
tion from the early non-thermalized stage of the fireball in heavy-ion collisions has
been predicted using the parton cascade model [107]. These photons are produced
from the fragmentation of time-like quarks (q → qγ), produced in semi-hard mul-
tiple scatterings in the pre-equilibrium phase. However, recently there have been
some doubts raised on this result by one of the authors [108].

Concluding, the production of prompt photons in heavy-ion collisions is not well
understood at the moment. As we will see below, this leads to controversial conclu-
sions about the role of prompt photons in the photon spectrumat SPS measured by
WA98. In order to predict the prompt photon spectrum at RHIC and LHC precise
pp andpA data on photons at the corresponding energies will be very helpful [99].

Summarizing the status of the theoretical investigations of the direct photon pro-
duction rate in heavy-ion collisions, new methods for calculating the rate from the
QGP as well as improvements of the HHG and prompt photon ratesare necessary.
Only then will it be possible to make reliable predictions which can be used for a
comparison of theoretical and experimental spectra at SPS as well as at RHIC and
LHC.

2.2 Hydrodynamics and Photon Spectra

The static thermal photon production rates discussed abovecannot be compared
directly to the experiment, in which only spectra and yieldsof the photons from the
entire space-time evolution of the fireball can be observed.Therefore, one has to
convolute the rates with the space-time evolution to obtainthe photon spectrum. In
the present Section, we will consider the basic concepts andthe theoretical descrip-
tion of the space-time evolution of the fireball in relativistic heavy-ion collisions.
In particular, we will discuss hydrodynamical methods and their application to the
computation of photon spectra. The assumptions and approximations of the hy-
drodynamical models are another source for uncertainties in predicting the photon
production, as we will see below.

2.2.1 Space-Time Evolution of the Fireball

There are two basic scenarios for the space-time evolution of the fireball in relativis-
tic heavy-ion collisions [109] as shown in Fig. 12. For collision energies

√
s≪ 100

GeV (AGS, SPS), the nuclei are stopped in the collision to a large extent and a dense
and hot expanding fireball with a finite baryon density (finitechemical potential)
is formed, which might be in the QGP phase initially if the critical temperatureTc

of about 150 - 170 MeV is exceeded. The expansion leads to a temperature drop
until Tc is reached, at which hadronization sets in. After a potential mixed phase
and hadronic phase, the interactions in the fireball will finally freeze out allowing
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Fig. 12. Nucleus-nucleus collisions at
√

s ≪ 100 GeV (stopping) and at
√

s ≃ 100 GeV
or larger (transparency).

the hadrons to propagate freely. In the second scenario, expected to be valid for√
s ≃ 100 GeV or larger (RHIC, LHC), there is not enough time for the highly

Lorentz contracted nuclei to be stopped in the nucleus-nucleus collision. Rather
they propagate through each other approximately transparently. However, the vac-
uum between the receding nuclei will be highly excited from the initial hard parton
collisions and will decay violently into a baryon-free (zero chemical potential) par-
ton gas by secondary parton collisions or, in a non-perturbative picture, by string
decay. The secondary collisions will drive the parton gas tothermal equilibrium,
corresponding to the QGP stage. The system is mainly expanding in beam direction
in a boost-invariant way (Bjorken scenario) [110,111], accompanied by a cooling of
the fireball. The various stages, mixed phase, hadronic phase, and freeze-out, follow
as in the first scenario. The space-time diagram of the secondscenario, showing the
various stages, is sketched in Fig. 13. Thez-axis agrees with the beam direction. At
t = 0, the maximum overlap of the nuclei takes place. The producedparticles in this
diagram lie above the light-cone due to causality. The hyperbolas denote curves of
constant proper timeτ =

√
t2 − z2, on which the same physics, e.g. energy density

and temperature, occurs, according to the boost-invariantBjorken scenario [110].

In order to speak of the QGP as a thermal system, we need a largevolume and
particle number, and a sufficiently long life-time of the equilibrated system. Rough
estimates give a sufficiently large volume of the order of 1000 fm3 at RHIC or LHC,
a large parton number up to about a several thousand, and a sufficiently long life-
time of the parton gas of 5 - 10 fm/c before hadronization setsin. For the formation
time of the QGP a typical value of the order of 0.5 - 1 fm/c has been accepted [112].

25



Fig. 13. Space-time diagram of a ultrarelativistic heavy-ion collision in the Bjorken sce-
nario.

However, doubts have been raised, whether the parton gas in aheavy-ion collision
will reach a thermalized stage at all, at least by elastic scatterings as assumed usu-
ally [113]. Moreover, the realization of a chemical equilibrium between gluons and
light quarks appears to be questionable at RHIC and LHC [114,115].

In order to describe the dynamical evolution of a many-particle system in non-equi-
librium or equilibrium, transport models are adopted. Starting from the Boltzmann
equation [116], describing the transport of different interacting hadron species semi-
classically [117], particle production, e.g. photon production, in heavy-ion colli-
sions up to collision energies of about 1 A·GeV can be treated successfully [118].
Transport models have also been used to describe the photon spectrum in relativis-
tic heavy-ion collisions [119]. However, in these approaches only a hadron gas but
not a QGP phase has been considered, which requires the transport theoretical de-
scription of a parton gas. Although such microscopic modelsfor the parton-gas
dynamics based on perturbative QCD exist [120,121], they have not been applied
to photon production from the QGP so far. Hence, no transporttheoretical pre-
dictions of photon spectra in relativistic heavy-ion collisions taking into account a
QGP phase are available.

To illustrate the hydrodynamical calculation of the photonspectrum, we will con-
sider in detail a simple hydrodynamical model in the following. This model is cer-
tainly oversimplified as it neglects the transverse expansion of the fireball and is
based on an unrealistic EOS, which leads to a strong first order phase transition
and a long-lived mixed phase in contradiction to lattice results [14]. More realistic
hydrodynamical descriptions including transverse flow andan improved EOS will
be discussed subsequently.
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Assuming a local thermal and chemical equilibrium hydrodynamical equations can
be derived from the Boltzmann equation [116]. The relativistic hydrodynamical
equations follow from the conservation of the baryon number, energy, and mo-
mentum. If we assume an ideal fluid, i.e. neglect dissipativeeffects, the energy-
momentum tensor is given by

T µν = (ǫ+ P ) uµ uν − P gµν , (14)

where ǫ is the energy density,P the pressure,uµ = γ(1,v) = ∂xµ/∂τ (γ =
1/
√

1 − v2) the (local) 4-velocity of the fluid, andgµν the Minkowski metric. From
the conservation of the energy-momentum tensor,∂µT

µν = 0, multiplied byuν , the
relativistic Euler equation follows

uµ ∂µǫ+ (ǫ+ P )∂µu
µ = 0. (15)

Assuming for simplicity only a longitudinal boost-invariant expansion, i.e.uµ =
xµ/τ , (Bjorken scenario [110]), as it might be the case approximately at RHIC and
LHC energies, the Euler equation can be written as

dǫ

dτ
+
ǫ+ P

τ
= 0. (16)

For an ideal ultrarelativistic gas, such as the non-interacting QGP,ǫ = 3P holds
and the evolution of the energy density, depending only on time, can be determined
easily:ǫ = ǫ0 (τ0/τ)

4/3. Furthermore, one obtainsT = T0 (τ0/τ)
1/3. Hereτ0, ǫ0,

andT0 are the initial time, energy density, and temperature, respectively. They are
determined by the time at which the local equilibrium has been achieved.

The results of a hydrodynamical model depend strongly on thechoice of the initial
conditions. Therefore a reliable determination of the initial conditions is crucial.
The initial conditions can be taken in principle from transport calculations describ-
ing the approach to equilibrium, such as the parton cascade model (PCM) [120]
or HIJING [121], which treat the entire evolution of the parton gas from the first
contact of the cold nuclei to hadronization. However, thereare no unambiguous cri-
teria for determining the completion of the equilibration process in these transport
models. Another possibility for fixing the initial conditions comes from relating
observables to the initial conditions. For example, the initial temperature can be
related to the particle multiplicitydN/dy, assuming an ideal parton gas with an
isentropic expansion [20]

T 3
0 =

c

4a

1

V0

dN

dy
. (17)

HereV0 = πR2
Aτ0 is the initial volume with the nucleus radiusRA ≃ 1.3 A1/3 fm,
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For the initial timeτ0, one usually assumes values of the order of 1 fm/c. Further-
more,c = 2π4/(45ζ(3)) ≃ 3.6 anda = 8π2/45 + 7π2NF/60 with NF light quark
flavors.

Another relation between the initial temperature and the initial time, which is used
frequently, is based on an argument using the uncertainty principle [122]. The for-
mation timeτ of a particle with an average energy〈E〉 is given byτ〈E〉 ≃ 1.
The average energy of a thermal parton is about3T . Hence, we findτ0 ≃ 1/(3T0).
However, the formation time of a particle, i.e. the time required to reach its mass
shell, is not necessarily identical to the thermalization time [122]. Consequently,
the determination of the initial conditions is far from being trivial. However, if data
for hadron production are available, such as at SPS, they canbe used to determine
or at least constrain the initial conditions for a hydrodynamical calculation of the
photon spectra [123].

Another essential ingredient for a hydrodynamical model isthe EOS. Since we
want to describe a fireball undergoing a phase transition, weneed an EOS for the
QGP as well as for the HHG. The QGP EOS has been determined in lattice QCD
[124,6], which shows a clear deviation from an ideal QGP at temperatures accessi-
ble in heavy-ion collisions. In most hydrodynamical calculations, however, a sim-
ple bag model EOS has been used for the QGP [125]. For a vanishing chemical
potential, the pressure and energy density in this model aregiven by

Pq = gq
π2

90
T 4 −B,

ǫq = gq
π2

30
T 4 +B, (18)

where the effective number of degrees of freedom is

gq = 2 (N2
C − 1) +

7

8
4NC NF (19)

with the number of colorsNC = 3. For two active quark flavors (NF = 2) one
getsgq = 37 and for three (NF = 3) gq = 47.5, respectively. The bag constantB is
related to the critical temperature (see below) and typically of the orderB1/4 = 200
MeV. The EOS is given byǫq = 3Pq + 4B.

For the HHG EOS usually an ideal hadron gas is adopted. However, the number of
hadron species included varies. Typically, all hadrons up to masses of 2 or 2.5 GeV
are taken. For illustration we will restrict ourselves to a massless pion gas [126].
Then the pressure and energy density are given by

Ph = gh
π2

90
T 4,
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ǫh = gh
π2

30
T 4 (20)

with gh = 3 andǫh = 3Ph. In fact, comparing the photon spectrum at SPS energies,
obtained by using this simple EOS, with results from using more realistic EOS, e.g.
[127], one finds thatgh = 3 should be replaced bygh = 8 [51].

The two EOS are matched together by the Gibbs criteria:T q
c = T h

c = Tc and
P q

c = P h
c = Pc. Together with Eqs. (18) and (20) a relation between the bag

constant and the critical temperature follows

T 4
c =

90B

(gq − gh)π2
. (21)

For instance, a bag constant ofB1/4 = 200 MeV impliesTc = 144 MeV for gq = 37
andgh = 3. Now in addition to the initial conditions,τ0 andT0, there are two more
parameters, namely the critical temperatureTc and the freeze-out temperatureTf ,
where the hydrodynamical evolution ceases. The critical temperature, predicted by
lattice QCD, is in the range170±20 GeV [6], and the freeze-out temperature should
be between 100 and 160 MeV [128].

The construction above implies the existence of a mixed phase corresponding to a
first-order phase transition (see Fig. 14). Although lattice QCD favors a continuous
phase transition instead of a first-order transition [14], lattice calculations show also
a rapid change in the energy density similar as in the bag and pion gas model due
to a large increase in the number of degrees of freedom going from the HHG to the
QGP. The life-times of the different phases in our simple model are given by [126]

∆τq = τ0

[

(

T0

Tc

)3

− 1

]

,

∆τc = τ0

(

T0

Tc

)3
[

gq

gh

− 1

]

,

∆τh = τ0

(

T0

Tc

)3




(

Tc

Tf

)3

− 1



 , (22)

where∆τc denotes the life-time of the mixed phase, during which the temperature
T = Tc stays constant. The life-times of the different phases as a function of the
initial and the critical temperature are shown in Fig. 15 andFig. 16. The simple
EOS of a massless pion gas leads to a strong first-order transition and hence to
a very long-living mixed phase. Hence, it is important to usea realistic EOS for
the HHG. In particular, in the no-phase-transition scenario, to which the phase-
transition scenario has to be compared for predicting signatures, a realistic EOS
is essential. For example, the initial temperature in the massless pion gas has to
be chosen unrealistically high (T0 = 578 MeV), if the initial temperature of the
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Fig. 14. Energy density and temperature evolution forgq = 37, gh = 3, τ0 = 1 fm,
T0 = 250 MeV, Tc = 170 MeV, andTf = 150 MeV [126].

QGP isT0 = 250 MeV and identical values for the initial time and the entropyare
assumed in both scenarios [129].

The hydrodynamical model presented above for illustrationis certainly oversimpli-
fied. A transverse expansion cannot be neglected, in particular in the later stages
of the fireball, changing the photon spectra significantly atRHIC and LHC (see
below). There are different hydrodynamical models for relativistic heavy-ion col-
lisions on the market, which describe the expansion of the fireball in 2 or 3 space
dimensions [130,131]. Of course, the hydrodynamical equations can only be solved
by rather elaborate numerical techniques in this case. Alsoit might not be justified
to restrict to an ideal fluid, but dissipation might be important. For example, per-
turbative estimates of the viscosity of the QGP yielded a large value [132,133].
Hence, the Euler equation should be replaced by the Navier-Stokes or even higher
order dissipative equations. However, dissipative effects render the numerical treat-
ment much more difficult and introduce new parameters such asviscosity [130].
After all, first attempts in this direction have been undertaken already [134].
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Fig. 15. Life-times of the QGP (dashed line), the mixed phase(dash-dotted line), and the
HHG (dotted line) as a function ofT0 [126].
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Fig. 16. Life-times of the QGP (dashed line), the mixed phase(dash-dotted line), and the
HHG (dotted line) as a function ofTc [126].

Under the simplifying assumption of an ideal fluid, the hydrodynamical equations
can be solved numerically using the respective EOS for each of the two phases and
the initial conditions, such as initial time and temperature, as input. The final results
depend strongly on the input parameters as well as on other details of the model, as
in the simple 1-dimensional case. Also it is important to adopt a realistic EOS, in
particular for the hadron gas, as discussed above.

Finally, the deviation from a chemically equilibrated QGP,which is expected to be
important at RHIC and LHC [114,115], should be taken into account. It is expected
that the parton gas at RHIC and LHC energies will be thermalized rapidly on a time
scale of 0.5 to 1 fm/c [120,121]. However, a chemical equilibration of the plasma
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might require much more time if it is realized at all [114,115]. This means that the
parton abundances are less than their equilibrium value. Inorder to describe the
deviation from chemical equilibrium, a time-dependent gluon or quark suppression
factorλg,q(τ), sometimes called fugacity, is introduced. Then the non-equilibrium
distribution functions readfg(E, τ) = λg(τ)nB(E) andfq(E, τ) = λq(τ)nF (E),
respectively. For example, the energy density at zero baryon density is now given
by ǫ = (λgag + λqaq)T

4, whereag = 8π2/15 andaq = 7π2NF/20. This ex-
pression can be used in Bjorken’s hydrodynamic equation Eq.(16), which yields
[λg + (aq/ag)λq]

3/4 T 3τ = constant [114].

The parton phase space will be populated by inelastic partonreactions producing
quarks and gluons. To lowest order those are:gg → qq̄ andgg → ggg. The time
dependence of the fugacities can now be determined from rateequations, which
contain the cross sections for theses processes [114]. As a subtle point, screen-
ing masses (Debye screening, thermal quark mass) have to be used to cut off IR
singularities in these cross sections. These screening masses also depend on the
fugacities, as screening is less efficient in a dilute system[114]. Solving the rate
equations together with Bjorken’s hydrodynamic equation,the time-dependence of
the fugacities and the temperature is obtained. The initialvalues for the temperature
and the fugacities can be taken from PCM [120] or HIJING [121]at the moment at
which thermalization is completed, i.e., as soon as there are approximately expo-
nential and locally isotropic momentum distributions [114]. Using HIJING initial
conditions, the initial fugacities are far from their equilibrium value,λeq

g,q = 1, in
particular for the quark component,λ0

q ≪ 1. Larger initial fugacities follow from
the PCM. Anyway, due to the larger cross sections for gluon production, one ex-
pects much more gluons than quarks in the early stages of the fireball, which is
called the “hot glue” scenario [135]. The fugacities increase with time but might
never reach their equilibrium value before hadronization sets in, in particular at
RHIC [114]. At the same time the temperature of the fireball drops even more
rapidly than in equilibrium because the production of partons consumes energy.

The above picture of chemical equilibration can also be incorporated in more re-
alistic hydrodynamical models containing also a transverse expansion [136]. It has
been shown that the system evolves initially to chemical equilibrium but will be
driven away from it at a later stage, in which the transverse flow becomes impor-
tant.

For predicting photon spectra from a chemically non-equilibrated QGP, it is not
only necessary to modify the hydrodynamics, but also the photon production rates
change. Starting from Eq. (2), the equilibrium distribution functions have now to
be replaced byfg,q, containing the fugacities. Also the fugacities have to be consid-
ered, for example, in the thermal quark mass in Eq. (4),m2

q = (λg + λq/2) g2T 2/6
[114], serving as an IR cutoff. Modified rates for photon production from Compton
scattering, annihilation, and bremsstrahlung, obtained in this way, have been used
to predict photon spectra for RHIC and LHC [46,47,52,53,137], which we will dis-
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cuss in Section 4. A more sophisticated way is to calculate the non-equilibrium
rates by generalizing the HTL method to chemical non-equilibrium [48,138]. Baier
et al. [48] have calculated the 1-loop HTL photon productionrate in this way and
found results similar to the ones of the simplified approach of Ref.[47].

Recently, Wang and Boyanovsky [139,140] found a significantenhancement of the
photon production forpT > 1.0 - 1.5 GeV due to the finite life-time of the QGP.
Considering this non-equilibrium effect within the real time formalism, they ob-
tained a power law spectrum for the photons from off-shell quark bremsstrahlung,
q → qγ.

2.2.2 Photon Spectra

As emphasized already a few times, photon spectra follow from convoluting the
photon production rates with the space-time evolution of the heavy-ion collision,
for which usually hydrodynamical models are employed,

E
dN

d3p
=
∫

d4x E
dN

d4x d3p
. (23)

Here, the rate on the right-hand-side depends on the temperature, which depends
in turn on the space-time coordinate in accordance with the assumption of a local
equilibrium.

For illustration, but also because it is widely used, we willdiscuss the calculation
of the spectra using simple Bjorken hydrodynamics, following Ref.[126]. In this
model the fireball is a longitudinally expanding cylinder. Hence, we can write

∫

d4x = π R2
a

∫

dt dz, (24)

whereRA ≃ 1.3 A1/3 fm andz is the beam axis. It is convenient to make a coor-
dinate transformation to proper timeτ and rapidityy′ of the emitting fluid cell, i.e.
t = τ sinh y′ andz = τ cosh y′, yielding

∫

dt dz =

τf
∫

τ0

dτ τ

+ynucl
∫

−ynucl

dy′, (25)

whereτ0 andτf are the initial and freeze-out times andynucl = arcosh[
√
s/(2A ·

GeV)] [131] is the center-of-mass projectile rapidity. For SPS (
√
s = 17A · GeV)

one findsynucl = 2.8, for RHIC (
√
s = 200A · GeV) ynucl = 5.3, and for LHC

(
√
s = 5500A · GeV) ynucl = 8.6. UsingE/d3p = 1/(d2pTdy) with the transverse
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momentumpT and the rapidityy of the photon, one arrives at

dN

d2p⊥ dy
= π R2

A

τf
∫

τ0

dτ τ

+ynucl
∫

−ynucl

dy′E
dN

d4x d3p
. (26)

The thermal photon spectrum is defined in the center-of-masssystem and the pho-
ton rate on the right-hand-side in the local rest frame of theemitting fluid cell,
where the photon energy is given byE = pT cosh(y′ − y).

During the mixed phase the photon production rate is given as

E
dN

d4x d3p
= λ(τ)

(

E
dN

d4x d3p

)

QGP

+ [1 − λ(τ)]

(

E,
dN

d4x d3p

)

HHG

, (27)

whereλ(τ) = VQGP(τ)/Vtot(τ) is the QGP volume fraction.

Eq. (26) together with the estimates for the rates from the QGP and the HHG allows
a systematic investigation of the photon spectrum, depending on the mass number
A, the projectile rapidityynucl, the thermalization timeτ0, the initial temperatureT0,
the critical temperatureTc, and the freeze-out temperatureTf . In the following all
spectra are calculated for photons at mid-rapidityy = 0. The following results have
been obtained [126]: The photon spectrum is proportional toR2

A (see Eq. (26)), i.e.
dN/(d2pTdy) ∼ A2/3. The dependence of the spectra on the limits of the rapid-
ity integrationynucl is very weak since photons from a fluid cell withy′ far away
from zero do not contribute to mid-rapidity photons becausethey must have a large
energy in the local rest frame of the fluid cell and are therefore exponentially sup-
pressed in the rate. However, the collision energy, from which the projectile rapidity
follows, determines the initial time and temperature, which have an important in-
fluence on the spectrum. In fact, one can show thatdN/(d2pTdy) ∼ τ 2

0 [126]. At
higher collision energies, smaller thermalization times are expected [114]. At the
same time the initial temperature is increased, which is thedominating factor. For
example, an increase of the initial temperature fromT0 = 200 MeV to 300 MeV
increases the thermal photon yield by more than a magnitude for a fixed initial
time [126]. In particular, highpT photons are enhanced, i.e., the spectrum gets flat-
ter corresponding to a higher temperature. The reason for this enhancement of the
yield is the longer life-time of the fireball and the larger rates at higherT0 (see Fig.
15). The dependence of the spectrum onT0 is exemplified in Fig. 17. As can be
seen from Fig. 16, an increase ofTc will result in a decrease of the life-times of the
QGP and the mixed phase and an increase of the HHG life-time. Depending on the
rates from the different phases, this affects the spectrum.Using the rates discussed
above one observes an increase of the spectrum by about a factor of 5 going from
Tc = 160 MeV toTc = 200 MeV (see Fig. 18), due to a higher mean temperature in
the latter case. A lower value ofTf implies a longer life-time of the HHG. However,
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Fig. 17. Photon spectra at an initial temperatureT0 = 200 MeV (above) and 300 MeV
(below). The dashed line corresponds to the spectrum from the QGP, the dotted one to the
spectrum from the HHG, and the solid one to the sum of both [126].

since the rates are small at low temperatures, a change of thefreeze-out tempera-
ture is negligible in this simple model. However, taking into account a transverse
expansion, this statement will be changed.
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Fig. 18. Photon spectra at a critical temperatureTc = 160 MeV (above) and 200 MeV
(below), where the same notation as in Fig. 17 is used [126].

The role of a finite chemical potential on the photon spectra will be discussed
in connection with the comparison of the theoretical spectra with SPS data from
WA80 and WA98 in Section 4. The modifications of the spectra due to a chemical
non-equilibrium will be considered in the predictions of spectra for RHIC and LHC
(Section 4).

So far, different aspects of the hydrodynamical calculation of photon spectra in rel-
ativistic nucleus-nucleus reactions have been investigated. The various results for
SPS, RHIC and LHC, using different hydrodynamical models and rates, will be
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reviewed in Section 4, where also the prompt photon spectrumwill be considered.
However, a systematic and comprehensive hydrodynamical calculation of photon
spectra together with dilepton and hadronic spectra from SPS to LHC energies, con-
sidering the most recent rates, a realistic EOS, a reasonable fixing procedure for the
initial conditions, transverse expansion, and chemical non-equilibrium, is missing.
Hence, besides the problems with the rates, the ambiguitiesin the description of the
fireball evolution are another main source for uncertainties in the theoretical pre-
diction of photon spectra in relativistic heavy-ion collisions [141]. After all, simple
hydrodynamical models, e.g. with a simplified EOS and without transverse expan-
sion, can be useful to study systematically certain aspectssuch as the dependence
on different parameters (initial time and temperature, critical temperature, etc.) or
the relative importance of different contributions to the spectrum [126,51].
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3 Experiments

The detection of electromagnetic radiation may involve very different technolo-
gies, just because for the possible energies or wavelengthsvery different physics
is relevant, ranging from atomic and molecular processes atlow energy to particle
physics concepts at high energy, the latter being importantfor the subject of this
report, where we deal with photon energies in the GeV range. In this regime one
concentrates on measuring individual quanta, i.e. photons, and their four-momenta.
Huge detectors weighing up to several hundred tons are employed to perform this
measurement of individual photons. For essentially all of these detectors, the pho-
tons have to be converted into charged particles which eventually will be measured.

3.1 Experimental Methods

In the following Section the experimental foundations of direct photon measure-
ments are discussed. For this purpose we present different methods for inclusive
photon detection and discuss in the following the further requirements for the iden-
tification of the direct fraction of the measured photons.

3.1.1 Photon Detection

High energy photon detectors can be divided into two main categories depending
on the detection principle:

(1) electromagnetic calorimeters, which attempt to measure the total energy which
has been deposited in a given amount of material by an electromagnetic cas-
cade following the first conversion and

(2) conversion detectors, which combine the photon conversion into e+e− with
the subsequent momentum measurement of the charged leptonsby tracking.

In its ideal forms these two different types of detectors have complementary mer-
its. On the one hand, the energy measurement in a calorimeteris affected by sta-
tistical number fluctuations in the electromagnetic showerwhich become less and
less important for photons of higher energy, while the momentum determination
of the conversion products in a tracking system has to deal with the measurement
of smaller deflections of tracks with increasing e+,e−-momenta. Calorimeters are
therefore generically better suited for very high energy photons. In addition, con-
verters are required to be relatively thin to allow for precise momentum measure-
ment from just the two conversion products so that the detection probability (which
includes the conversion probability) is relatively low, while calorimeters usually
have detection probabilities of essentially100%. Calorimeters are also intrinsically
fast which allows to use them for triggering purposes.
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On the other hand, the momentum measurement from tracking devices yield point-
ing capabilities far superior to calorimeters which in their basic configurations have
almost none — this can help considerably to reduce potentialbackgrounds of par-
ticles not originating from the reaction studied, as e.g. cosmic rays or beam halo.
The conversion measurement should also suffer less from misidentification of other
particles, which might still yield signals in a calorimeter. This is most important for
relatively small photon energies. Furthermore, calorimeters have inherent limits
with regard to the separation of two particles with small opening angles because
of the finite lateral dimensions of showers in the detector material, while even for
very small angular separations of the photons the e+e−-pairs may have very well
separated tracks allowing them to be individually detectedin a conversion/tracking
device. This may be of importance for more sophisticated measurements like two-
photon-correlations, but will also have an impact on detection capabilities in a high
multiplicity environment or for extremely high momenta, where hadron decay pho-
ton pairs start to merge in a calorimeter.

Calorimeters have been most widely used for the detection ofhigh energy photons
because of their advantages sketched above. One should, however, keep in mind
that the conversion method may be advantageous in special situations, and that for
very precise measurements the combination of both methods may be considered, as
they should be affected by very different sources of systematic error. Electromag-
netic calorimeters are constructed as eitherhomogeneousor assamplingcalorime-
ters. Sampling calorimeters are built using a high-Z material (e.g.Pb) as absorber
and an active material (very frequently light generating like plastic scintillator) in
consecutive layers. Homogeneous calorimeters use one material which serves as
both absorbing and active material. They can in principle achieve much better de-
tector performance than sampling calorimeters because of the additionalsampling
fluctuationsin the latter.

Examples of high energy photon detectors used include

• lead-scintillator-sandwich calorimeters [142–151],
• lead glass calorimeters which measure the Cherenkov light emitted by shower

particles via photomultiplier tubes [152–157],
• calorimeters out of scintillating crystals likeNaI [158–160] orBGO [161] read-

out via either phototubes or photodiodes,
• liquid-argon calorimeters which are sampling detectors measuring the specific

ionization of charged shower particles in wire chambers filled with liquid argon
[162–167],

• lead-proportional tube sampling calorimeters [168] and
• converters combined with magnetic electron-positron-pair spectrometers [169–

172].

Homogeneous calorimeters made of scintillating crystals are generally superior in
energy resolution due to their high light output. Sampling calorimeters suffer from
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additional sampling fluctuations but are much less expensive, especially if detectors
of large thickness are required to allow containment of veryhigh energy photon
showers. Of course, the higher the photon energy, the less important is the intrinsic
energy resolution of a calorimeter.

Another important figure of merit is the suppression of hadrons. Most calorimeter
materials have much longer hadronic interaction length compared to their radiation
length. Hadrons are very unlikely to deposit a considerablefraction of their energy
and are effectively suppressed at high energies. A similar effect helps in suppress-
ing a large fraction of muons. Further hadron suppression can be achieved by ex-
ploiting the differences in shape of showers induced by hadrons or photons, with
electromagnetic showers being usually much better contained. A fine lateral seg-
mentation allows to discriminate showers from their lateral width, which is larger
for hadronic showers. Longitudinal segmentation can sample the depth profile -
hadronic showers penetrate deeper into the detector.

A combination of sufficient longitudinal and lateral segmentation can even provide
pointing capabilities which help to suppress background particles which do not
originate from the interaction vertex.

For further suppression of charged particles additional tracking detectors can be
used. These will also help to reduce the contamination by theusually small
fraction of electrons and positrons produced, i.e. chargedparticles generating
electromagnetic showers in calorimeters. The detectors may either be special-
ized charged particle veto detectors, like multiwire proportional chambers [142–
146,155] or streamer tube detectors [156,157], providing the point of impact of
charged particles just in front of the calorimeter or fullmagnetic spectrometers
[147–151,166,167].

For direct photon measurements other requirements, like e.g. knowledge of the
detector response or particle discrimination capabilities, become more and more
important. Thus the detector choice may well depend on the particular measurement
“strategy” that is used.

3.1.2 Direct Photon Identification

In particle physics experiments one usually tries to achieve anindividual identifi-
cationof direct photons. The environment is such that photons frommeson decays
(mostly from pions) will bebothdetected with high probability in a certain energy
range. Photons detected assingle, i.e. no appropriate other photon is measured
which would combine with the candidate to a known hadron, maybe treated as
direct photons and only small corrections for detection efficiencyor finite geomet-
rical acceptance have to be applied. Random coincidences oftwo particles which
fake a photon combination originating from a hadron decay are rare and can be ne-
glected. In collider experiments (see e.g. [150,151,166,167]) one usually requires
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photons to beisolated, i.e. not accompanied by any other cluster in the calorime-
ter. In addition to the suppression of multi-photon background from hadron de-
cays, this also suppresses direct photons produced by Bremsstrahlung processes of
hard quarks, which would be observed close to the jet fragmentation products11 .
For very high photon energies the discrimination of single photons against neutral
mesons, esp. pions, decaying into two photons with a small opening angle becomes
extremely important. For these cases the two photon showerscan not be separated.
Two different methods have been used to statistically estimate the contamination
[150,151,166,167]:

a) The shower shape is measured in a dedicated detector and compared with sim-
ulated shower shapes from direct photons and from the expected background.

b) The higher conversion probability in the first layers of the detector for two
collinear photons compared to a single photon is used to estimate the back-
ground from the longitudinal distribution of the shower.

Uncertainties of the direct photon measurement in particlephysics experiments
include:

(1) Background from beam halo (muons), beam-gas events or other no-target con-
tributions,

(2) multi-event pile-up,
(3) trigger efficiency,
(4) misidentified charged and neutral hadrons (important incalorimeters at lower

energies),
(5) contamination from merged neutral pions (important in calorimeters at higher

energies),
(6) single photons from hadron decays (important for small detector acceptance

and/or asymmetric decays),
(7) energy scale uncertainty,
(8) conversion probability in conversion measurements,
(9) loss of photons from conversion and

(10) uncertainty of luminosity, target thickness etc. (overall scale uncertainty) .

Heavy-ion experiments have the additional difficulty of dealing with high multi-
plicities already at relatively low energies. It is therefore not possible to identify
individual direct photons. One has to resort to astatistical identificationof direct
photons.12 For any given photon there is a high probability that anotherrandom
photon is detected which would combine well with the first to apotential hadron
decay photon pair. The only possible strategy is therefore to measure all inclu-

11 This suppression may in general cause a bias of the measured distribution and has to be
accounted for when comparing to theoretical calculations.
12 This is also true for some particle physics experiments using detectors with limited res-
olution.
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sive photons regardless of their origin and to subtract the photons originating from
hadron decays (see e.g. [157]). For most situations, where the fraction of direct pho-
tons compared to all photons is relatively small, this implies that the direct photon
result is obtained by subtracting two large numbers. Therefore such analyses are
even more sensitive to systematic errors. To the sources of systematic uncertainty
cited above have to be added:

(11) effects of a multiplicity dependent detector response.

This includes e.g. the influence of randomly overlapping showers in a calorimeter.

Other crucial sources of systematic error in this situationare related to the deter-
mination of the decay photons from hadrons, most importantly neutral pions and
η mesons. The preferred option is of course to measure the production of neutral
mesons simultaneously in the same data set as the inclusive photons. Such a mea-
surement is usually performed by a two-photon invariant mass analysis [157]. Even
if the two-photon decay mode is not the only decay producing background photons
(there is e.g. the Dalitz decayπ0 → e+e−γ), the known branching ratios allow
to calculate all relevant decay contributions. In this casethe following systematic
uncertainties on the relative amount of meson decay photonsmay contribute:

(12) Uncertainty of the subtraction of combinatorial background,
(13) effects of multiplicity dependent detector response on the meson reconstruc-

tion (different from item 11),
(14) geometrical acceptance,
(15) loss of mesons from photon conversion,
(16) loss of mesons from merging photon showers and
(17) those effects from the energy scale uncertainty, from beam-gas events or other

no-target contributions which differ from the effects on inclusive photons.

Any uncertainty on the overall normalization of the cross sections (like those men-
tioned under item 10) does not enter here, if the meson spectra are determined from
the same data sample. Those hadrons decaying into photons, which are not mea-
sured, have to be estimated from other sources. This is usually the case for heavier
mesons (e.g.ω, η′), which contribute only a very small fraction to the total number
of decay photons. In conversion measurements, however, already the detection of
neutral pions is very difficult and can very often not be done,because the single
photon detection probability is low. This may introduce a very large systematic un-
certainty of the decay background to be subtracted and has tobe treated with great
care.

3.2 Experimental Results
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Fig. 19. Direct photon cross section per nucleon forp-induced reactions at
√

s = 19.4GeV.
Data are from experiments E704 [155], E629 [164] and NA3 [169]. The inset shows the
ratios of experimental data to a simultaneous fit to all data sets.

3.2.1 pp andpA Experiments

A great wealth of experimental results frompp andpA experiments is available. For
a compilation of these results see e.g. [92]. The beam energies range from

√
s =

19.4 GeV to
√
s = 1.8 TeV. The lowest energy data (up to

√
s = 30.6 GeV) have

been measured in fixed-target experiments at CERN [142,144–146,143,152,168–
170], and Fermilab [155,164,165] while the data at higher energies are from col-
lider experiments at ISR [153,154,158–160,162,163], SPS [147–149] and the Teva-
tron [150,151,166,167].

We will only discuss some of the experimental results in different energy regimes as
examples for the experimental achievements in this field. Wehave chosen energies
for which different data sets exist which may be compared. The lowest beam energy
at which direct photon data are available is

√
s = 19.4 GeV. At this energy cross

sections for direct photons are measured inpp reactions by the Fermilab experiment
E704 [155], and by two experiments inp+C reactions, E629 [164] at Fermilab and
NA3 [169] at CERN. These data are shown in Fig. 19 together with fits of the
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phenomenological function [173]:

E
d3σ

dp3
= A ·

(

p0

pT + p0

)n

. (28)

The NA3 experiment has performed measurements using two independent techni-
ques, i.e. measurements using a calorimeter (label “calo”)and conversion measure-
ments (label “conv”). There are considerable discrepancies between the different
data sets — these can be judged more easily from the inset, where the different
data sets are normalized to a common fit to all data points. Theresults from E629
are considerably above the other data sets, especially the measurement at the high-
estpT , which is about a factor of 10 higher. All data sets show different slopes, and
the overall discrepancies, even ignoring the highpT point of E629, are of the order
of a factor of 3 which is mostly covered by the experimental error bars.

As the discrepancies appear to be smallest at lowpT and increase with higherpT

it is likely that energy scale uncertainties play a role here. Still the variations even
between the two data sets within the same experiment indicate that other system-
atic uncertainties like background contamination are not negligible. One should
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however note that some of these results were among the first direct photon mea-
surements available, and some progress has been made concerning e.g. background
estimates and detector simulations. Nevertheless this comparison gives a first hint
of the difficulties of direct photon measurements.

Fig. 20 shows direct photon cross sections forpp reactions at
√
s = 63 GeV from

CERN ISR experiments R110 [154], R806 [162] and R807 (AFS) [159]. Again fits
with Eq. (28) are provided, and the inset shows the ratio of data to an overall fit.
The relative variation of the different data sets is smallerthan at lower energies
which may in part be due to the higher photon energies, which can be more reliably
measured with a calorimeter. Still there is a significant difference especially in the
slope of the different measurements which might e.g. be related to uncorrected non-
linearities. In addition, these experiments have requiredisolation cuts which make
the interpretation more difficult.

As some of the more recent examples, Fig. 21 shows direct photon cross section
for p̄p reactions at

√
s = 1.8 TeV from experiments E740 (D0) [167] and E741

(CDF) [150]. Measured photon energies reach values beyond 100 GeV. While a
calorimetric measurement is well suited for such a task in general, one of the major
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uncertainties in this case lies in the (in)ability to discriminate single photons from
merged photons originating fromπ0 decay. The spectra of the two experiments
are very similar in shape, while there appears to be a difference of about50% in
absolute normalization. Still the relative agreement between the two sets is good
relative to earlier direct photon measurements.

The parameters of the fits of Eq. (28) to the Tevatron data are in the rangep0 = 1.7−
2.1 GeV/c andn = 5.8 − 6.1. Fits to jet cross sections [174] in a similarpT range
yield p0 ≈ 16 GeV/c andn ≈ 8.5 – decreasing the parameterp0 yields slightly
smaller values of the powern, they are, however, still significantly larger than the
values obtained for the direct photon cross section13 . These values are larger than
the simple parton model scaling prediction [175], which would result inn = 4.
This discrepancy is not surprising, as the strongxT dependence of the structure
functions is expected to modify this behavior. The fits to thedata at lower

√
s yield

consistently larger values ofn, indicating that the deviation from the simple parton
scaling becomes more important at lower energies.

13 Pure inverse power law fits yield also lower powersn, however, they provide only much
worse descriptions of the data.
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Dimensionality arguments in the context of the parton modelsuggest that the cross
section may be parameterized as [175]:

Ed3σγ/dp
3 = f(xT , θ)/s

2, (29)

wherexT = 2pT/
√
s andθ is the emission angle of the photon. We have therefore

attempted to combine photon measurements at midrapidity atall available energies
by plotting s2Ed3σγ/dp

3 as a function ofxT in Fig. 22. The experimental range
of xT spans from 0 to roughly 0.6, where high energy data contribute at lowxT

and low energy data at highxT . This recipe provides an astonishingly good uni-
versal representation of all the photon data. Fig. 22 also shows a fit of a power
law f(xT ) = a · xb

T which yields an exponent ofb = −5.79. Looking into more
of the details in Fig. 22 one can see, however, that the individual data sets are not
perfectly described. Especially at lower beam energies andlow photon transverse
momenta the data deviate from the universal curve. Possibleinterpretations of these
discrepancies will be discussed in Section 4.1.

Since the early measurements of direct photons it has been customary to investi-
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gate first the ratio of photons to neutral pionsγ/π0. For the experimentalist, this
is a convenient quantity, as some of the systematic errors drop out in such ratios.
Neutral pions are the major source of decay photons which provide a background
to the direct photon measurement. In particular, the inclusive photon yield at a
given transverse momentum is dominated by photons from asymmetric decays of
π0 which carry approximately the same transverse momentum. The γ/π0 ratio is
therefore a good indicator of the difficulty to extract a direct photon signal.

More quantitatively one can obtain an approximation to theγπ0−decay/π
0 ratio,

which is the dominant contribution to the decay photon background as:

γπ0−decay

π0
≈

2/pT

∫∞
pT
dp′T 1/p′T dNπ0/dp′T

1/pT dNπ0/dpT

. (30)

This formula follows directly, if one assumes that for a givenp′T of the neutral pions
the decay photons are uniformly distributed inpT between 0 andp′T .

In Fig. 23 theγ/π0 ratio is displayed for reactions at
√
s = 19.4 GeV. Included

are the experimental results14 for pp and pC as in Fig. 19 and the estimate of
the π0 decay photons according to Eq. (30). The relative variationbetween the
different data sets appears to be smaller in the ratio compared to the direct photon
cross section, which may indicate that some of the systematic errors do actually
cancel. Even at the highestpT the decay photons are still not negligible compared
to the direct photons. The direct photon data essentially stop around 3 GeV/c, where
they tend to go below the10% level relative to the decay photons. At lowpT the
extraction of direct photons appears to be hopeless as the decay photon background
increases and at the same time the direct photon signal is expected to be very small.

3.2.2 Heavy-Ion Experiments at the SPS

Experimental data on direct photons in heavy-ion collisions is scarce, as the ex-
traction is much more difficult due to the much higher particle multiplicity. The
highest available energy in heavy-ion collisions so far at the CERN SPS has been
approximately at the lowest energy where direct photons could be measured inpp.

Using the relatively light ion beams of16O and32S at a beam energy of 200AGeV,
corresponding to a nucleon-nucleon center of mass energy of

√
sNN = 19.4 GeV,

the experiments WA80 [156,176], HELIOS (NA34) [171] and CERES (NA45)
[172] have attempted to measure direct photons. All these measurements have been
able to deliver upper limits of direct photon production.

HELIOS has studiedp-, 16O- and 32S-induced reactions [171] with a conversion

14 The NA3 data obtained with the conversion trigger have not been included, as the neutral
pion spectra from this data sample do not agree with the general trend of the other data sets.
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method. Photons convert in an iron plate with a thickness of5.7% of a radiation
length. The electron-positron pairs are tracked in one drift chamber each before and
after a magnet with a momentum kick of≈ 80 MeV/c. Two planes of multiwire
proportional chambers bracket the converter and help in localizing the conversion
point. The authors estimate the ratio of the integrated yields of inclusive photons
and neutral pions:

rγ =
Nγ

Nπ0

(31)

for pT > 100 MeV/c. They calculate the neutral pion yield from the number of
negative tracks in their magnetic spectrometer. Their results (with 4 − 11% statis-
tical and9% systematic uncertainty) and their estimate of decay photons (with 9%
systematic uncertainty) agree within these errors. An analysis of the32S-induced
data with a higher cutoff ofpT = 600 MeV/c yields a comparable result. However,
the results are of limited value in the context of both promptand thermal direct
photons, as they are dominated by the lowestpT , where the expected direct photon
emission would be negligible.

A similar measurement has been performed by the CERES experiment, which has
studied32S + Au reactions [172]. Photons are measured when they convert in the
target, the e+-e−-pairs are reconstructed by tracking in the two RICH detectors.
The RICH detectors operate with a high threshold (γ ≈ 32) to effectively sup-
press background from charged hadrons. Momentum and chargeinformation are
obtained from the deflection in a superconducting double solenoid between the
RICH detectors. Photon conversions are identified by requiring a vanishing open-
ing angle in the first RICH (unresolved double ring) and a larger opening angle
from the magnetic field in the second RICH (two distinct rings). The measured
photon spectra have to be corrected for reconstruction efficiency — the correction
factor ranges from≈ 2 at the largestpT to ≈ 6 at pT = 0.5 GeV/c and increases
dramatically belowpT = 0.5 GeV/c. They obtain inclusive photon spectra in cen-
tral 32S + Au reactions in0.2 GeV/c ≤ pT ≤ 2.0 GeV/c. The results agree within
errors with their hadron decay generator, which is tuned to reproduce charged and
neutral pion spectra from different heavy-ion experiments. They estimate a similar
ratio of integrated yields:

r′γ =

(

dNch

dη

)−1 2.0GeV/c
∫

0.4GeV/c

dNγ

dpT

dpT , (32)

which they use — again by comparing to the generator — to establish an upper limit
(90% CL) of 14% for the contribution of direct photons to the integrated inclusive
photon yield. One of the uncertainties which is difficult to control in this analysis
relates to the fact that they use simulated hadron yields in their generator which
are tuned to other measurements with different trigger biases and systematic errors,
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and that especially the neutral pions have not been measuredwithin the same data
set.

In addition, the CERES experiment has utilized another method to extract infor-
mation on a possible direct photon contribution. As in naivepictures of particle
production in these reactions the direct photon multiplicity is proportional to the
square of the initial multiplicity while the hadron multiplicity should be propor-
tional to the initial multiplicity, they have studied the multiplicity dependence of
the inclusive photon production. Their upper limit on a possible quadratic contri-
bution is slightly lower than the above limit on direct photons fromr′γ , its relation
to the direct photon contribution is however dependent on the model of particle
production. Similar to the HELIOS measurements both these results are dominated
by the lowpT part of the spectra, so the result is consistent with the expectation of
a very low direct photon yield at lowpT .

The WA80 experiment has performed measurements with16O [176] and32S [156]
beams using a lead glass calorimeter for photon detection. Most hadrons deposit
very little energy and are thus effectively suppressed. A shower shape discrimina-
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tion further reduces the hadron background, and charged hadrons are in addition
rejected by the help of a charged particle veto detector consisting of streamer tubes
with pad readout. The contamination by neutrons and antineutrons is estimated by
Monte Carlo simulation — it is expected to be small. The raw spectra are corrected
for a multiplicity dependent reconstruction efficiency. The systematic errors are
checked by performing the analysis with a number of different choices of exper-
imental cuts. Inclusive photons andπ0 andη mesons have been measured in the
same data samples, which helps to control the systematic errors. WA80 reports no
significant direct photon excess over decay sources in peripheral and central colli-
sions of16O +Au and32S +Au. The average excess in central32S +Au collisions
in the range0.5 GeV/c ≤ pT ≤ 2.5 GeV/c is given as5.0% ± 0.8% (statistical)
±5.8% (systematic). ApT dependent upper limit (90% CL) of direct photon pro-
duction as shown in Fig. 24 has been obtained, which gives more information than
the integrated limits, as it can constrain predictions at higherpT , where a consider-
able direct photon multiplicity may be expected.
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For Pb + Pb collisions at 158A GeV (
√
sNN = 17.3 GeV) the WA98 experi-

ment has performed photon measurements [157] using similardetectors and analy-
sis techniques as WA80. In peripheral collisions no significant direct photon excess
was found. In central collisions the observed photons cannot entirely be explained
by decay photons, implying the first observation of direct photons in high energy
heavy-ion collisions. The extracted direct photon spectrum is shown in Fig. 25. The
only other direct photon measurements at a similar energy are fromp-induced re-
actions as discussed in Section 3.2.1. Data frompp reactions by E704 [155] and
from p+C reactions by E629 [164] and NA3 [169] at

√
s = 19.4 GeV have been

converted to the lower energy
√
s = 17.3 GeV assuming a scaling according to Eq.

(29) and have been multiplied with the average number of binary nucleon-nucleon
collisions in the centralPb + Pb reactions (660). These scaledp-induced results
are included in Fig. 25 for comparison. They are considerably below the heavy-
ion results which indicates that a simple scaling of prompt photons as observed
in pp is not sufficient to explain the direct photons in centralPb + Pb reactions.
Interpretations of this discrepancy will be discussed in the following chapter.

We would like to close our discussion of existing direct photon data by comparing
theγ/π0 ratio extracted from heavy-ion data to those frompp andpC in Fig. 26.
The value in heavy-ion data is≈ 3 − 5% in most of thepT range, which is similar
to the lowest values extracted in the proton data. This may betaken as a hint that
such levels of direct photons approach the feasibility limit of such measurements.
Still lower levels will be very hard or impossible to detect.

3.3 Outlook for RHIC and LHC

In summer 2000 experiments at the Relativistic Heavy Ion Collider (RHIC) at BNL
started to take data in collisions of Au nuclei at

√
sNN = 130 GeV, continuing

with a beam energy of
√
sNN = 200 GeV from 2001 on. First results of the RHIC

experiments have already been presented [8], however results on direct photons are
not available at this early stage.

One of the major goals of the PHENIX experiment [177,178] at RHIC is the mea-
surement of direct photons in the central detector arms at midrapidity. Photon mea-
surements and neutral meson reconstruction are performed with electromagnetic
calorimeters using two different technologies, a lead glass detector, which consists
of the transformed and updated calorimeter used in WA98 and alead-scintillator
sampling calorimeter. In addition, the sophisticated electron detection capabilities
should also allow to measure inclusive photons via the e+-e−-pairs from conver-
sions. The central detectors cover90◦ in azimuth and the pseudorapidity range
|η| < 0.35. A central magnet provides an axial field, and tracking and momen-
tum measurement is performed in three different sub-systems: pad chambers (PC),
drift chambers (DC) and time-expansion chambers (TEC). Electron identification
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is achieved by simultaneously using a ring imaging Cherenkov counter (RICH)
for p < 4.7 GeV/c, electromagnetic energy measurement in the calorimeters for
p > 0.5 GeV/c anddE/dx measurement in the TEC forp < 2 GeV/c. A planned
upgrade of the TEC to a transition radiation detector (TRD) will further strengthen
the electron identification. Photons converting in the outer shell of the multiplicity
and vertex detector (MVD) can be identified as electron pairswith a small, but fi-
nite apparent mass15 . It is planned to add a converter plate to the experiment for
part of the data taking to minimize uncertainties of the conversion probability and
the location of the conversion point. Photons withp > 1 GeV/c will be identified
in the calorimeters with hadron suppression from the smaller deposited energy and

15 This finite mass is an artefact of the assumption of particle emission from the collision
vertex.
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additional rejection by time-of-flight (for slow hadrons) and shower shape analysis.
Furthermore, charged hadrons will be identified by the tracking detectors in front of
the calorimeters. The calorimeters will also measureπ0 andη production necessary
for the estimate of the decay photon background.

The different technologies should provide an excellent measurement of direct pho-
tons with independent checks of systematic errors. In addition, as RHIC is a dedi-
cated heavy-ion accelerator, a much higher integrated luminosity is expected, which,
together with the expected higher photon production rates,will make the RHIC
measurements superior to the existing lower energy heavy-ion data.

Pb beams at even higher energies (
√
sNN = 5.5 TeV) will be available at the future

Large Hadron Collider at CERN, which is supposed to deliver heavy-ion beams to
physics experiments in 2007. There will be one dedicated heavy-ion experiment,
ALICE [179], which is planning to measure direct photons. Inaddition, one of the
pp experiments, CMS [180,181] may also attempt to measure direct photons at very
high transverse momenta in heavy ion collisions. Of course,as LHC is primarily
a proton machine and the heavy-ion beam time will be limited,the measurement
conditions are not as favorable as at RHIC, the expected photon rates, however,
should still be higher and compensate partially for this.

The photon measurement in ALICE will be performed with the photon spectrome-
ter PHOS [182], which consists of a calorimeter out ofPbWO4 crystals read out by
avalanche photodiodes.PbWO4 has recently received a lot of attention as a rela-
tively radiation hard, dense crystal suited for photon detection at colliders — it will
also be used for the electromagnetic calorimeter of the CMS experiment. The dense
material allows to use small cross sections of individual modules and thus yields
excellent position resolution and low double hit probability. The energy resolution
of the detector is expected to be below2% for Eγ > 4 GeV/c. The detector will be
operated atT = −25◦C, which results in a considerably higher light output com-
pared to room temperature. It will cover|η| < 0.12 and100◦ in azimuthal angle.
Different options of using either a charged particle veto detector or a pre-shower
detector in front of PHOS are still being investigated. A pre-shower detector would
provide much better hadron rejection capabilities at higher costs compared to a pure
charged particle veto.

The dynamic range of the photon measurements at RHIC should extend over the
range1.0 GeV/c ≤ pT ≤ 30 GeV/c, discrimination of highpT photons from merg-
ing π0 should be possible up topT = 25 GeV/c. The ALICE PHOS has been
optimized for photons in the range0.5 GeV/c ≤ pT ≤ 10 GeV/c, while measure-
ments should be possible up topT = 40 GeV/c with π0 rejection at least up to
pT = 30 GeV/c.
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4 Comparison of Theory and Experiment

4.1 Comparisons of prompt photons inpp andpA collisions

The inclusive production of prompt photons inpp collisions is not fully understood
[102], as we mentioned already in Section 2.1.3. Using perturbative QCD together
with an “optimization” prescription [93], in which the renormalization scaleΛQCD

and parameters of the parton structure functions are optimized, an excellent agree-
ment between theory [183–186] and experiments until 1997 [92] over the entire
range of collision energy

√
s and transverse photon momentumpT was obtained,

choosing a single set of structure functions and a unique value forΛQCD. However,
new data from E706 (p−Be andπ −Be) at

√
s = 31.6 GeV and

√
s = 38.8 GeV

[91] cannot be explained in this way, as shown in Fig. 27.

Fig. 27. Normalized ratio of data to theory for various experiments as a function of
xT = 2pT /

√
s [102].

The disagreement between theory and experiment persists even if the theoretical
description is improved by a soft-gluon resummation and by including next-to-
next-to-leading-order corrections [94]. An agreement between theory and data can
be achieved only by introducing an intrinsic transverse parton momentumkT as
a new phenomenological energy-dependent parameter [96,97]. However, choosing
kT = 0.7 GeV for fitting the UA6 data andkT = 1.2-1.3 GeV for E706 implies
kT > 1.5 GeV for the ISR data, which destroys the agreement with data sets of
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WA70 and ISR [102]. On the other hand, for thepA data from E706 the introduction
of an additionalkT broadening by nuclear effects (Cronin effect [88]) provides a
possible explanation of the data [99] as shown in Fig. 28.
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Fig. 28. Comparison of data from E706 with theoretical calculations with (solid line) and
without (dashed line) Cronin effect [99].

Similarly, Wong and Wang [100] concluded that most experimental data can be
explained if an intrinsic transverse momentum of the partons is taken into account.
For example, at

√
s = 19.4 GeV the photon invariant cross section is enhanced by

a factor of 2 if next-to-leading order corrections are included and by a factor of 4
to 8 due to the transverse momentum effect (see Fig. 29). Alsoshown is the small
influence of using different parametrizations (DO, CTEQ, MRS96) of the parton
distributions on the cross section.

Furthermore, Apanasevich et al. [187] compared theoretical models including next-
to-leading order and intrinsic momentum effects with ratios of γ/π0 yields, in
which various experimental and theoretical uncertaintiescancel. They conclude
that the theory agrees reasonably with data at

√
s > 30 GeV, whereas at lower

energies deviations between theory and experiments as wellas between different
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data sets appear.

4.2 Comparison with SPS Heavy-Ion Experiments

4.2.1 Comparison to Limits of WA80

The first confrontations of theoretical calculations [129,188–191] to experimental
heavy-ion data were performed with the preliminary WA80 data [192] which in-
dicated a significant excess of direct photons in centralS+Au reactions. We will
not discuss this in detail, as the final publication of the WA80 data [156] did only
provide an upper limit for direct photon production. All of these publications have
been able to describe the preliminary WA80 data with scenarios including a phase
transition using 1-loop HTL rates for the QGP. To achieve this, Shuryak and Xiong
[188] had to assume a surprisingly long-living mixed phase.Furthermore, Srivas-
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tava and Sinha [129] and Dumitru et al. [191] concluded that apure hadron gas
scenario could be excluded because it would overpredict theobserved photon spec-
tra. While the interpretation found in Ref. [188] could no longer be sustained from
the final WA80 data, the conclusions of Refs. [129] and [191] are related to some
of the simplifying assumptions, mainly the unrealistic equation of state used for the
HHG.
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Fig. 30. Comparison of the WA80 upper limits [156] with hydrodynamical calculations
using different EOS [193]. EOS A and B contain a phase transition, EOS H corresponds to
a HHG of massive mesons and baryons and EOS I to an ideal pion gas.

Sollfrank et al. [193] employed a 2+1-dimensional hydrodynamical model to calcu-
late hadronic and electromagnetic spectra at the same time.They investigated var-
ious EOS with and without phase transition. They concluded that the WA80 limits
only exclude an ideal pion gas for the EOS of the HHG. A no-phase-transition sce-
nario with a more complicated HHG EOS, on the other hand, is not ruled out (see
Fig. 30) for initial temperatures belowT0 = 250 MeV. Also in Ref. [194], it was
found that the WA80 upper limits for direct photons cannot distinguish between a
phase transition and no phase transition. Furthermore, it was argued that medium
effects on hadron masses will reduce the highpT spectrum by about a factor of 2.

Recently, Srivastava and Sinha repeated their calculations using the 2-loop HTL
results [49,51] and a HHG EOS with all hadrons with masses up to 2.5 GeV
[195,196]. The importance of a realistic EOS for the HHG, discussed already in
Section 2, is demonstrated in Fig. 31, where one observes that a HHG EOS with
only π-, ρ-, ω-, andη-mesons leads to a large overprediction of the photon spec-
trum at SPS energies, whereas a realistic EOS including hundreds of resonances is
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Fig. 31. Comparison of photon spectra with a simplified HHG EOS (left) and a realistic
one (right) [195].

similar to the spectrum with a phase transition. The new conclusion by Srivastava
and Sinha was that the phase transition as well as the no-phase transition scenario
agree with the upper limits from WA80 [197] (see Fig. 32). However, they argue
that a hadron density of several hadrons per fm3 is needed at the initial time, which
seems to contradict the assumption of a HHG.

Summarizing, the upper limits for direct photons from WA80 can be explained
with and without phase transition and, therefore, do not allow a conclusion about
the existence of a QGP phase. However, they have triggered investigations of some
of the simplifications used in earlier calculations, as e.g.unrealistic EOS for the
HHG.

Fig. 32. Comparison of the WA80 upper limit [156] for the direct photon spectrum to a
calculation with (left) and without (right) phase transition [197].
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4.2.2 Comparison with WA98

Recently the WA98 Collaboration presented the first data on direct photons in rel-
ativistic heavy-ion collisions [157]. Different groups comparing their calculations
with these data arrived at different conclusions, which we will review in the follow-
ing.

Fig. 33. Comparison of the WA98 data with a hydrodynamical calculation by Srivastava
and Sinha [127].

Srivastava and Sinha [127] argued, using the 2-loop HTL ratefor the QGP contri-
bution and a realistic EOS for the HHG, that the QGP is needed to explain the data.
Their conclusion is based on the use of a very high initial temperature (T0 = 335
MeV) and very small initial time (τ0 = 0.2 fm/c), which could explain the ob-
served flat photon spectrum for transverse photon momentapT > 2 GeV (see Fig.
33). Their estimate of the initial conditions follows from the isentropy condition
Eq. (17) [20] together with the use of the uncertainty principle [122],τ0 ≃ 1/3T0.
However, the uncertainty relation, giving the parton formation time, might underes-
timate the thermalization time [122]. However, the authorsargue that such a small
thermalization time also provides a very good description of the intermediate mass
dilepton excess measured by NA50 [198]. Also, if later thermalization times are
assumed, one should add a pre-equilibrium contribution to the photon spectrum.
Using more conservative initial conditions (T0 = 196 MeV, τ0 = 1 fm/c), the data
are clearly underestimated in particular atpT > 2 GeV (see Fig. 34). Srivastava
and Sinha have also included prompt photons from the work by Wong and Wang
[100], which follow from a next-to-leading order perturbative QCD calculation,
where an intrinsic parton momentum of〈k2

T 〉 = 0.9 GeV2 has been used. Srivas-
tava and Sinha found that the thermal photons contribute half of the total photon
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spectrum and that in particular at largepT most of the thermal photons are due to
the QGP contribution. However, one should keep in mind that the question of the
QGP photon rate is not yet settled and that the 2-loop HTL calculation might be an
overestimation, since the LPM-effect is neglected there [63]. Furthermore, Srivas-
tava and Sinha neglected a finite baryo-chemical potential,which reduces the QGP
contribution to the photon spectrum. For example, even a small baryo-chemical po-
tential ofµB = 100 MeV, corresponding to a quark-chemical potentialµq = 300
MeV, reduces the 1-loop HTL photon production rate by more than a factor of 3
at pT = 3 GeV [43]. On the other hand, the photon production from nucleons and
other baryons might enhance the rate [79].

Fig. 34. Comparison of the SPS photon and pion spectra with hydrodynamical calculations
using different initial times [127].τ0 = 0.2 fm/c corresponds to the upper lines.

Also Alam et al. [199] favor a QGP contribution for explaining the WA98 data.
However, they claim that due to the uncertainties in the rates and the hydrody-
namical parameters a definite conclusion is not possible at SPS energies. Alam et
al. used a EOS of the HHG with much less degrees of freedom thanSrivastava
and Sinha. However, they considered in-medium modifications of hadron masses
which lead to an enhancement of the photon spectrum at SPS energy for photon
momenta abovepT = 2.5 GeV. At pT = 4 GeV this enhancement amounts to an
order of magnitude. In addition, they introduced an initialradial velocityv0, which
renders the photon spectrum flatter atpT > 2 GeV even for moderate values of
v0 = 0.2c. Owing to these effects, Alam et al. obtained a much flatter spectrum
at highpT , which allows an explanation of the WA98 data without promptpho-
tons within the phase-transition as well as the no-phase-transition scenario, even
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for conservative initial conditions,T0 ≃ 200 MeV andτ0 = 1 fm/c. However, in a
number of papers hydrodynamical calculations were able to reproduce hadronic as
well as electromagnetic spectra (see e.g. [123]) and flow patterns [200,201] with-
out assuming an initial radial velocity. In particular, thehigh pT component above
2 GeV in theπ0-spectrum, which has been used to argue about an initial radial ve-
locity [202], might also come from hard processes and shouldnot be treated in a
hydrodynamical model [203].
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Fig. 35. Comparison of the WA98 data with a theoretical spectrum (upper solid line) in-
cluding thermal (lower solid line) and prompt photons (dashed line) [73].

Gallmeister et al. [73], on the other hand, argued that the low momentum part of the
WA98 spectrum (pT < 2 GeV) is consistent with a thermal source, either QGP or
HHG, which also describes dilepton data. The hard part (pT > 2 GeV), on the other
hand, agrees with the prompt photon spectrum if its absolutevalue is normalized
to the data, corresponding to a large effectiveK-Factor of 5 (see Fig. 35). It should
be noted that the prompt photon production at

√
s = 17.3 GeV is uncertain, in

particular for lowpT . Gallmeister et al. used a simple hydrodynamical model with
only a radial expansion and a fixed average temperature, which reproduces dilepton
data from SPS [204]. In addition, they adopted only the 1-loop HTL rate for the
entire evolution of the fireball according to the quark-hadron duality hypothesis. If
in addition a transverse flow ofv = 0.3 is included, the theoretical and experimental
spectra agree. In other words, according to the investigation by Gallmeister et al.,
the WA98 spectrum can be explained by a thermal source (QGP orHHG) plus
prompt photons and there is no necessity of a QGP phase. Similarly, Dumitru et al.
[90] showed that the WA98 photon spectrum abovepT = 2.5 GeV can be explained
by prompt photons if a nuclear broadening of∆k2

T = 〈k2
T 〉AA − 〈k2

T 〉pp ≃ 0.5
- 1 GeV2 is introduced. For lowpT < 2.5 GeV, however, prompt photons fail to
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reproduce the WA98 data regardless of the amount of nuclear broadening employed
(see Fig. 36).
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Fig. 36. The photon spectrum calculated for different intrinsic transverse momenta in com-
parison to the WA98 data [90].

Huovinen et al. [123], fixing the initial conditions (T0 = 210 - 250 MeV) in their
hydrodynamical model partly by a comparison with hadron spectra and using the
most recent results for the QGP photon rate by Arnold et al. [66], were able to de-
scribe the data equally well with or without a phase transition [205] (see Fig. 37).
They were able to fit the WA98 data without a high initial temperature16 , an initial
radial velocity, prompt photons, or in-medium hadron masses. This might be caused
partly by a strong flow at later stages since they do not assumea boost-invariant
longitudinal expansion. However, the different results and conclusions between the
work by Srivastava and Sinha [127] and by Huovinen and Ruuskanen [205] can-
not be explained in this way [206]. The conclusion, that the WA98 data can be
explained with or without a phase transition, was also obtained in Refs.[202,207].
However, there an initial radial velocity (see above) had tobe introduced in order
to obtain a quantitative description of the WA98 data.

Steffen and Thoma [51], using the corrected 2-loop HTL rate,the parametrization
of the HHG rate Eq. (11), and the simple 1-dimensional Bjorken hydrodynamics,
found that the thermal photons underestimate the WA98 data for pT > 2 GeV for

16 It appears, however, that locally an initial temperature ofTmax > 240 MeV is required
to fit the flat slope of the data [206].
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Fig. 37. The photon spectrum calculated for different EOS and initial conditions with
prompt photons (upper set, scaled by a factor 100) and without (lower set) in compari-
son to the WA98 data [205]. EoS A, IS 1 contains a phase transition atTc = 165 MeV, an
average initial temperatureT0 = 255 MeV, and a local maximum temperatureTmax = 325

MeV. EoS H describes only a HHG withT0 = 234 MeV, Tmax = 275 MeV (IS 1) and
T0 = 213 MeV, Tmax = 245 MeV (IS 2).

reasonable initial temperatures between 170 and 235 MeV (see Fig. 38). These high
pT photons, however, might be explained by prompt photons. Using a massless pion
gas (gh = 3) for the HHG EOS, the computed spectrum exceeds the WA98 dataat
pT < 2 GeV already for initial temperatures as low asT0 = 170 MeV. However, if
one increases the number of massless pions togh = 8, which provides an agreement
with photon spectra from the HHG using more realistic EOS [127], the life-time
of the mixed phase is shortened, which allows higher initialtemperatures, up to
T0 = 235 MeV.

Summarizing, WA98 found a rather flat photon spectrum abovepT = 2 GeV, which
cannot be easily explained by conservative models. It requires either a high ini-
tial temperature, a large prompt photon contribution, an initial radial velocity, in-
medium modifications of the hadron masses and/or a strong flowat later stages.
Furthermore, the effect of a finite baryo-chemical potential, which should be im-
portant at SPS energies, has not been investigated so far. Also the effect of a finite
life-time of the QGP, which flattens the highpT spectrum [139,140], has only be
considered for RHIC energies (see below). At the moment, we think it is fair to
say that the uncertainties and ambiguities in the hydrodynamical models and in the
rates do not allow to decide from the WA98 photon spectra about the presence of a
QCD phase transition in SPS heavy-ion collisions.
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Fig. 38. The photon spectrum calculated for different critical and initial temperatures and
degrees of freedom in the HHG in comparison to the WA98 data [51].

4.3 Predictions for RHIC and LHC

There are a few predictions for the photon spectra for RHIC and LHC. Although
they suffer from large uncertainties coming from the unknown initial conditions,
at least for LHC in most cases a window in the photon momentum is predicted,
where a thermal QGP contribution should be visible if the decay photons are sub-
tracted. Simple 1+1-dimensional models [51,126] show a dominance of the QGP
over the hadron gas contribution forpT > 3 GeV (RHIC) andpT > 2 GeV (LHC),
respectively, due to the flat spectrum of the early QGP phase having a high initial
temperature (T0 > 300 MeV), as shown in Fig. 39.

Taking into account the transverse expansion, the photon spectrum from the hadron
gas becomes also flat due to a strong flow in the late stages of the fireball. But
even in this case, the QGP might outshine the hadronic phase.However, at which
collision energies and photon momenta this happens, is controversial. Hammon et
al. [208] predict that the QGP should not be visible at RHIC, where the prompt
photons dominate the spectrum, but at LHC forpT ≃ 2-5 GeV. They used the
following initial conditions for RHIC,T0 = 533 MeV and 300 MeV andτ0 =
0.1236 fm/c and 0.5 fm/c, and for LHC,T0 = 880 and 650 MeV andτ0 = 0.1 fm/c
and 0.25 fm/c, together with a simple HHG EOS and the 1-loop HTL result for the
QGP and HHG rates.

Srivastava [209], taking into account the corrected 2-loopHTL rate, predicts that
the QGP should be observable forpT < 1 GeV at RHIC andpT < 2 GeV at
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Fig. 39. QGP and HHG photon spectra at SPS, RHIC and LHCPb + Pb collisions for an
ideal pion gas withgh = 3 (left) andgh = 8 (right) degrees of freedom [51].

LHC (see Fig. 40). Above these momenta the sum of the photons from the thermal
hadron gas, enhanced by flow, and of the prompt photons dominates. Using the old
2-loop HTL rate, which is too large by a factor of 4, Srivastava found that the QGP
photons dominate already forpT < 3 GeV at RHIC andpT < 4 GeV at LHC,
which shows the sensitivity of the predictions to the rates.

Peressounko and Pokrovsky [141] predict a ratio of direct todecay photons of 0.2-
0.3 at LHC, which is much larger than the 5% limit for direct photons to be de-
tectable at ALICE. Whether the photons from the QGP or from the HHG dominate,
depends on rates that are adopted in their calculations.

Alam et al. [199], usingT0 = 300 MeV, τ0 = 0.5 fm/c together with the incorrect
2-loop HTL rate for the QGP, predict that forpT < 2 GeV most of the photons are
thermal photons. The photons from the QGP are an important source, in particular
around 2 GeV, but less important than HHG photons. The effectof the transverse
expansion is small in the QGP phase but large in the late stages of the HHG, leading
to a strong population of highpT photons together with prompt photons.

Dumitru et al. [90] have investigated the role of prompt photons at RHIC. They
showed that the effect of an intrinsickT is less important at RHIC than at SPS, but
still leads to an enhancement of the prompt photons by a factor of 3 atpT = 3-4
GeV. BelowpT < 2-3 GeV thermal photons should be visible.
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All these investigations did not take into account deviations from a chemical equi-
librium, which could be important at RHIC and LHC [114]. In particular, a gluon
dominated, hot early phase is expected, in which quarks are strongly suppressed
compared to their equilibrium abundance [135]. This would lead to a suppression
of about two orders of magnitude of highpT photons from the QGP. However, ex-
tending the rates as well as the hydrodynamical model to chemical non-equilibrium,
one observes that this strong suppression is compensated toa large extent by the
much higher initial temperature of the dilute parton gas compared to an equilibrated
QGP at the same initial energy density, as shown by Mustafa and Thoma [52] (see
Figs. 41 and 42). Here a transverse expansion was included, and initial conditions
for the temperature and the fugacities from the self-screened parton cascade model
(SSPC) [210] (T0 = 668 MeV, λ0

g = 0.34, λ0
q = 0.064 for RHIC andT0 = 1020

MeV, λ0
g = 0.43, λ0

q = 0.082 for LHC) together with a Fermi-like nuclear profile
have been used. At RHIC, the non-equilibrium compared to theequilibrium photon
spectrum is suppressed by a factor of 5 atpT = 1 GeV but enhanced by a fac-
tor of 2 at 5 GeV. At LHC, the non-equilibrium yield is smallerby about a factor
of 3 for all momenta. Note that in the non-equilibrium case the annihilation-with-
scattering contribution to the 2-loop HTL rate is largely reduced because it has at
least two quarks in the initial channel, which are suppressed by the small quark
fugacities. Hence, the relative importance of the various contributions (Compton,
annihilation, bremsstrahlung, and annihilation-with-scattering) is different in the
non-equilibrium compared to the equilibrium scenario. Also prompt photons have
been included (see Figs. 41 and 42), and a dominance of the thermal contribution
over the prompt photons forpT < 3.5 GeV at RHIC and LHC has been found.

Fig. 40. Predictions for the photon spectrum at RHIC (left) and LHC (right) [209].

It should be noted, however, that predictions of the photon yield at RHIC and LHC
suffer also from a large uncertainty in the initial conditions (temperature, quark and
gluon fugacities) for the chemical equilibration, which are predicted very differ-
ently in different transport models. For example, the HIJING model [121] predicts
much smaller initial temperatures and fugacities, which lead to a much stronger
suppression of the photon yield in the non-equilibrium case[52].
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Moreover, effects of the finite life-time of the QGP, leadingto a strongly enhanced
non-exponential photon spectrum at highpT , could help to identify the QGP con-
tribution at RHIC and LHC [139,140].

Fig. 41. Comparison of the the photon spectrum at RHIC from anequilibrated QGP (left)
and a chemically non-equilibrated QGP (right) at the same initial energy densityǫ0 = 61.4
GeV/fm3 [52].

Fig. 42. Comparison of the the photon spectrum at LHC from an equilibrated QGP (left)
and a chemically non-equilibrated QGP (right) at the same initial energy densityǫ0 = 425

GeV/fm3 [52].

It is interesting to note that at SPS even simple hydrodynamical models without a
phase transition work due to the small life-time of the QGP phase [73]. At RHIC
and LHC, on the other hand, we expect that the QGP contribution becomes signifi-
cant, which might allow to distinguish between hydrodynamical calculations using
different EOS, initial conditions and photon rates as input.

In conclusion, the transverse expansion of the later stagesin the HHG phase is
important at RHIC and LHC and renders the photon spectrum rather flat at large
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pT . Hence the hot QGP contribution to the spectrum, presuming the formation of
a QGP phase, will be covered partly by these HHG photons and prompt photons.
Whether there is apT window, where the QGP photons dominate depends on de-
tails of the rates and the hydrodynamical models, which are not yet under control.
Hadronic and dilepton spectra will help to reduce these uncertainties by constrain-
ing the initial conditions. Anyway, the QGP contribution tothe photon spectrum at
RHIC and LHC will be significant and might be extracted from the observed spec-
tra by comparing with calculations. Moreover, the experimental photon spectra at
RHIC and LHC will provide interesting information on the initial conditions and
the chemical equilibration of the fireball.
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5 Summary and Conclusions

Energetic photons from high-energy hadronic and nucleus-nucleus collisions pro-
vide important information about fundamental aspects of the particles involved and
their interactions. In particular, they probe the parton distributions in hadrons and
nuclei. In relativistic heavy-ion collisions, they serve as a direct probe for all stages
of the fireball since they leave the system without further interactions due to their
large mean free path. Most important, the thermal radiationfrom the fireball might
allow to extract information on the EOS of the matter produced in the collision.
Hence, the direct photon production provides one of the mostpromising signatures
for the QGP, a new state of matter likely to be created in ultrarelativistic heavy-ion
collisions.

Direct photons have been observed inpp andpA reactions at collision energies from√
s = 19.3 GeV to 1.8 TeV. In these experiments, they can be distinguished from

the decay photons, coming from hadronic decays, within the experiment directly.
At the present stage, the results for direct photons are controversial, especially at
low collision energies.

Direct photons from high-energy nucleus-nucleus collisions cannot be identified
experimentally due to the high hadron multiplicity. Rather, one has to subtract the
dominating background of the decay photons by reconstructing them from the mea-
sured hadrons, mainlyπ0 andη. In this way, WA98 were able to observe direct
photons at the SPS in centralPb + Pb collisions at a beam energy of 158 GeV
per nucleon, corresponding to

√
sNN = 17.3 GeV, whereas WA80 gave only an

upper limit for direct photons inS+Au collisions at a beam energy of 200 A GeV.
The extracted direct photon spectrum from WA98 shows a clearexcess over the
background for photon transverse momenta between 1.5 and 3.5 GeV/c.

In order to learn from these experimental results about the hadrons and their in-
teractions, one has to compare them to theoretical pre- and postdictions. Inpp and
pA collisions the cross sections for prompt photon productionhave been calculated
within perturbative QCD. These cross sections follow from folding the basic par-
tonic processes, e.g.qq̄ → gγ, with the parton distributions of the hadrons. Using
next-to-leading or even next-to-next-to-leading order corrections plus an optimiza-
tion procedure for fixing the parameters (renormalization and factorization scales),
a reasonable description of most of the data can be obtained although there are
some clear discrepancies in particular at low collision energies. Assuming an in-
trinsic momentum broadening in the parton distributions, abetter agreement with
the various data sets can be obtained, of course at the expense of introducing a new
parameter. Indications for an additional nuclear broadening (Cronin effect) have
also been found inpA collisions.

In a spatially and temporally extended system like the fireball in a nucleus-nucleus
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collision, it is not sufficient to compute the cross sectionsor rates for photon pro-
duction. Rather, one has to convolute the rates with the space-time evolution of the
fireball, for which usually hydrodynamical models are adopted. Furthermore, one
has to consider the photon production from different stages, i.e. prompt photons
from initial hard collisions and thermal photons from the QGP and the HHG. In this
way, photon spectra are obtained which can be compared to experimental spectra.
In order to draw a conclusion on the possible presence of a QGPphase, one has
to compare predictions for spectra with and without a QGP phase to experimental
results.

The calculation of the photon production rate from an equilibrated (or chemically
non-equilibrated) QGP is based on perturbative QCD at finitetemperature. To low-
est order the basic processes are quark-antiquark annihilation and Compton scatter-
ing. Owing to infrared singularities the HTL resummation technique has to be em-
ployed. Assuming the weak coupling limit, the leading logarithm contribution can
be extracted in this way. However, beyond the leading logarithm infinitely many di-
agrams, corresponding for example to bremsstrahlung, contribute to the same order.
Hence, the photon production rate from the QGP beyond the leading logarithm ap-
proximation may not be perturbatively describable. In the most recent calculations
of photon spectra, the 2-loop rate within the HTL improved perturbation theory has
been used as an educated guess. The photon production rate from the HHG, on the
other hand, is based on effective models for hadronic interactions. The most impor-
tant contributions to the rate come from interactions betweenπ- andρ-mesons. In
particular, thea1 resonance plays an important role for the photon production. Also
the HHG rate suffers from a number of uncertainties such as assumptions about the
effective Lagrangians, medium effects, etc.

For deriving the spectra from the rates, various hydrodynamical models, describ-
ing the expansion of the fireball in 1, 2 or 3 spatial dimensions, fixing the initial
conditions in different ways, using different EOS, and including a chemically non-
equilibrated QGP have been employed. However, a systematicand comprehensive
treatment is still missing. In other words, theoretical predictions are subject to un-
certainties in the rates as well as the hydrodynamical description.

The present calculations do not allow to infer about the existence of a QGP phase
in centralPb+Pb collisions at a beam energy of 158 A GeV. However, the data are
consistent with a thermal source, either QGP or HHG, for photons withpT < 2.5
GeV/c and with enhanced prompt photons forpT > 2.5 GeV/c.

The situation will change drastically at RHIC and LHC. The RHIC experiments
including PHENIX with its excellent photon detection have started to take data at√
sNN = 200 GeV. They will measure photon spectra with very high statistics.

The ALICE experiment planned for the CERN LHC is gearing up tomeasure pho-
tons in heavy-ion reactions at still higher beam energy. A much larger temperature
and life-time of the fireball in these collisions will cause acopious production of
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thermal photons. Most estimates of the photon spectra at RHIC and LHC predict a
window aroundpT = 2 GeV, where the QGP contribution should dominate. How-
ever, in order to confirm this prediction, new developments in the calculation of
the rates from QCD as well as a consistent description of the space-time evolution
would be essential. This conclusion applies also to all the other signatures for the
QGP, as quantitative predictions of non-perturbative QGP properties are required,
taking into account the dynamical evolution of the fireball at the same time. Unfor-
tunately, at the moment there is no non-perturbative, dynamical approach to QCD
available. Hence, the prospects and problems for discovering the QGP from the di-
rect photon production are similar as for other signatures.However, direct photons
from relativistic heavy-ion collisions will definitely help to reveal and understand
important and interesting properties of strongly interacting matter.

Acknowledgements:

We would like to thank P. Aurenche, T.C. Awes, A. Dumitru, K. Gallmeister, F.
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6 Appendix A: Perturbative Calculation of the Photon Production Rate

In this Appendix the photon production rate of energetic photons (E ≫ T ) is de-
rived to lowest order perturbation theory from the diagramsof Fig. 1, correspond-
ing to quark annihilation and Compton scattering. Startingfrom the definition Eq.
(2) of the rate, using the matrix elements for these processes, Kapusta et al. [25]
calculated the rate, assuming Maxwell-Boltzmann distributions for the incoming
partons, i.e.ni ∼ exp(−Ei/T ) for i = 1, 2 in Eq. (2). This facilitates the evalu-
ation of the momentum integrals overp1 andp2 in Eq. (2), which otherwise can
be done only numerically. The use of the Boltzmann distribution instead of the ex-
act quantum statistical distributions for quarks and gluons is justified in the case
of energetic photons,E ≫ T . Owing to energy conservation, the sum of the in-
coming parton energies is much larger than the temperature,E1 + E2 = E ≫ T ,
and the phase space for smallE1 or E2 is unfavorable [25]. Comparing to the nu-
merical calculation using Fermi and Bose distributions, one observes that the error
introduced by the Boltzmann approximation is less than a fewpercent [22].

But even assuming Boltzmann distributions for the incomingparticles, the momen-
tum integrations are still rather involved, although they can be performed analyt-
ically [21]. However, the calculation can be facilitated further on by computing
the inverse process, photon absorption, and using the principle of detailed balance
[15,211]. Accordingly, the photon production rate is related to the photon damping
or absorption rateγ by [211]

dN

d4xd3p
=

4

(2π)3
e−E/T γ. (33)

The damping rate is defined as the imaginary part of the dispersion relationω(p) of
a real photon in the QGP,γ = −Imω(p), i.e. it follows from

ω2 − p2 − ΠT (ω, p) = 0, (34)

where

ΠT (p0, p) =
1

2

(

δij −
pipj

p2

)

Πij(p0, p) (35)

is the transverse polarization tensor at finite temperature. (Πij denotes the spatial
components of the polarization tensor.) Assuming no overdamping, i.e.γ ≪ p, we
find

γ = − 1

2p
Im ΠT (p0 = p, p). (36)
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Using cutting rules [23], the damping rate can be calculatedalternatively from the
matrix elements. In the case of Compton scattering, i.e. theinverse process of the
one in Fig. 1, namely photon absorption and gluon emission, the damping rate is
given as

γcomp =
1

4E

∫

d3p3

(2π)32E3

nF (E3)
∫

d3E2

(2π)32E2

[1 + nB(E2)]
∫

d3E1

(2π)32E1

[1 − nF (E2)] (2π)4 δ4(P + P3 − P2 − P1)
∑

i

〈|M|2〉comp. (37)

In the case of pair creation, i.e. the inverse process of quark-antiquark annihilation
in Fig. 1, we have

γpair =
1

4E

∫

d3p3

(2π)32E3

nB(E3)
∫

d3E2

(2π)32E2

[1 − nF (E2)]
∫

d3E1

(2π)32E1

[1 − nF (E1)] (2π)4 δ4(P + P3 − P2 − P1)
∑

i

〈|M|2〉pair. (38)

In Eqs. (37) and (38) the factor1/(4E) instead of the usual1/(2E) comes from
the definition of the damping rate as the imaginary photon energy. The sums in
front of the matrix elements indicate sums over the initial states of the incoming
parton, since all possible states of the partons interacting with the photon have to
be counted in the rate. The matrix elements summed over all initial and final parton
states are given by [212]

∑

i

〈|M|2〉comp =−32
5

9
e2 g2

(

u

s
+
s

u

)

,

∑

i

〈|M|2〉pair =16
5

9
e2 g2

(

u

t
+
t

u

)

, (39)

where we neglected the quark masses as the bare up and down quark masses are
much smaller than the temperature. The Mandelstam variables ares = (P + P3)

2,
t = (P −P2)

2, andu = −s−t. The factor5/9 comes from the sum over the square
of the electric charges of the up and down quarks.

The Boltzmann approximation for the incoming particles in the production rate cor-
responds to using Boltzmann distributions for the outgoingparticles in the damp-
ing rate. This means that we simply neglect the distributionfunctions in the Pauli
blocking or Bose enhancement factors in Eqs. (37) and (38) since they do not exist
in classical statistics. This can also be seen by writing, for example,1 + nB(E2) =
exp(E2/T )nB(E2) ≃ 1. The advantage compared to the direct calculation of the
production rate is now that there are no distributions functions in the momentum
integrations overp1 andp2. Hence we can easily evaluate these integrals by trans-
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forming to the center of mass system using the Lorentz invariant phase space factor
[212]

dL = (2π)4 δ4(P + P3 − P2 − P1)
d3E2

(2π)32E2

d3E1

(2π)32E1
=

dt

8πs
. (40)

Then the integration overt from −s − Λ2 to −Λ2, whereΛ is a cutoff for the
logarithmic IR divergence of thet andu channel, leads to

∫

dL
∑

i

〈|M|2〉comp =
20

9π
e2 g2

(

ln
s

Λ2
+

1

2

)

,

∫

dL
∑

i

〈|M|2〉pair =
20

9π
e2 g2

(

ln
s

Λ2
− 1

)

. (41)

The remaining integral overp3 can be done usings = 2pp3(1 − p̂ · p̂3) and

∞
∫

0

dp3 p3 nB(p3) =
π2T 2

6
,

∞
∫

0

dp3 p3 nF (p3) =
π2T 2

12
, (42)

and

∞
∫

0

dp3 p3 ln
p3

Λ
nB(p3) =

π2T 2

6

[

ln
T

Λ
+ 1 − γ − ζ ′(2)

ζ(2)

]

,

∞
∫

0

dp3 p3 ln
p3

Λ
nF (p3) =

π2T 2

12

[

ln
2T

Λ
+ 1 − γ − ζ ′(2)

ζ(2)

]

, (43)

whereγ = 0.57722 is Euler’s constant andζ(z) is Riemann’s zeta function with
ζ ′(2)/ζ(2) = −0.569996. Using detailed balance, Eq. (33), we arrive at

(

dN

d4xd3p

)

comp

=
5

54π2
α αs T

2 e
−E/T

E

[

ln
8ET

Λ2
+

1

2
− γ +

ζ ′(2)

ζ(2)

]

,

(

dN

d4xd3p

)

pair

=
5

27π2
α αs T

2 e
−E/T

E

[

ln
4ET

Λ2
− 1 − γ +

ζ ′(2)

ζ(2)

]

, (44)

which has also been found by Kapusta et al. [25] in a direct calculation of the
production rate. Adding the two contributions above leads to Eq. (4) if we replace
the IR cutoffΛ by the bare quark massm0 and keep only the leading logarithm
assumingET ≫ m2

0.
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7 Appendix B: Hard Thermal Loops and Photon Production

The HTL resummation technique has been invented in order to cure serious prob-
lems of gauge theories at finite temperature [33,213–217]. For a review of this
method and its applications see [36–39]. It consists out of three steps: extraction of
the HTLs, resummation of HTLs into effective Green functions, and use of the
resummed Green functions. Using these effective propagators and vertices cor-
responds to an effective perturbation theory which yields gauge invariant results
[33,218] with an improved IR behavior.

1. Step: Extraction of the HTLs.The starting point for isolating HTL diagrams is
the distinction between the soft momentum scale,gT , and the hard one,T , which
is possible in the weak coupling limit,g ≪ 1. HTLs are 1-loop diagrams (self ener-
gies and vertex corrections) containing a hard loop momentum but exclusively soft
external momenta. The HTL approximation is equivalent to the high-temperature
limit of these diagrams [30,31,34] and the semiclassical approximation [39,219–
221]. In the HTL limit, analytic and gauge invariant expressions are obtained.

As an example, we discuss the quark self-energy, which is needed for the photon
production rate as discussed below. The most general ansatzfor the self-energy of
a massless fermion interacting with a heat bath at temperatureT is given by [31]

Σ(P ) = −a(p0, p)P/ − b(p0, p)γ0, (45)

wherea andb are scalar functions of the fermion energyp0 and the magnitude of
the momentump = |p|. Due to the choice of the heat bath as rest frame, the self-
energy depends onp andp0 separately and has a term proportional toγ0. It should
be noted that the ansatz Eq. (45) respects chiral symmetry. The functionsa andb
are related to traces of the self energy

a(p0, p)=
1

4p2
[tr(P/ Σ) − p0 tr(γ0 Σ)] ,

b(p0, p)=
1

4p2

[

P 2 tr(γ0 Σ) − p0 tr(P/ Σ)
]

. (46)

The HTL quark self-energy follows from the 1-loop diagram ofFig. 43, where the
internal hard momentum is much larger than the soft external. Using the imaginary
or real time formalism within thermal field theory [222–224], one finds in the HTL
approximation [37]

tr(P/ Σ) = 4m2
q ,

tr(γ0 Σ) = 2m2
q

1

p
ln
p0 + p

p0 − p
, (47)
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wherem2
q = g2T 2/6 is the effective quark mass. This result has been derived first in

the high-temperature limit [30,31]. Despite the appearance of a gluon propagator,
the HTL quark self-energy is gauge invariant. Furthermore,the effective quark mass
does not violate chiral symmetry as Eq. (45) is chirally invariant. For details of the
computation of HTL self-energies see e.g. [38].

2. Step: Resummed Green Functions.After having extracted the HTLs, we will
construct effective Green functions from them. E.g., the effective quark propagator
is obtained by resumming the HTL quark self-energy within the Dyson-Schwinger
equation of Fig. 43, resulting in

S(P )−1 = P/ − Σ(P ). (48)

For massless fermions it is convenient to use the helicity representation [225]

S(P ) =
γ0 − p̂ · γ
2D+(p0, p)

+
γ0 + p̂ · γ
2D−(p0, p)

, (49)

where

D±(p0, p) = (−p0 ± p) [1 + a(p0, p)] − b(p0, p). (50)

+=

Fig. 43. Dyson-Schwinger equation defining the effective quark propagator.

The bare quark propagator in the helicity representation follows from Eqs. (49)
and (50) fora = b = 0. The HTL resummed propagator is given by substituting
Eq. (46) together with Eq. (47) into Eqs. (49) and (50). It describes the propaga-
tion of collective quark modes in the QGP. The poles of the effective quark prop-
agator determine the in-medium dispersion relations shownin Fig. 44. This dis-
persion relation exhibits two branches, where the lower one, ω−(p), coming from
D−(p0, p) = 0, has a negative ratio of helicity to chirality. Such a mode, called
plasmino [226], does not exist in vacuum, but appears in a medium, similar as lon-
gitudinal photons (plasmons). For large momenta (p≫ gT ) the spectral strength of
the plasmino is exponentially suppressed. The upper branch, ω+(p), coming from
D+(p0, p) = 0, on the other hand, reduces to the vacuum mode withω(p) = p
for large momenta. At zero momentum both branches agree withω±(0) = mq.
The minimum in the plasmino branch has interesting consequences, leading to Van
Hove singularities in the low-mass dilepton production rate [225] and in the spec-
tral functions of hadronic correlators [227]. It can be shown that the minimum in
the plasmino dispersion relation is a general property of massless fermions at finite
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temperature, independent of the approximation for the effective quark propagator
[228]. Therefore, Van Hove singularities in the low-mass dilepton production might
provide a unique signature for the presence of deconfined, collective quarks in rel-
ativistic heavy-ion collisions [228]. Within the HTL approximation the in-medium
quarks (quasiparticles) are undamped. However, the HTL quark self-energy Eqs.
(45) to (47) exhibits an imaginary part below the light cone (p2

0 < p2) correspond-
ing to Landau damping, which describes the collisionless energy transfer from a
collective quark to the heat bath [229]. Hence virtual, time-like in-medium quarks
are damped in the HTL approximation.
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Fig. 44. Quark dispersion relation in the QGP.

Besides the HTL resummed quark propagator, also a HTL gluon propagator and
HTL vertices exist in QCD. The latter are a consequence of theWard or Slavnov-
Taylor identities which relate propagators to vertices [215], e.g.

ie [Σ(P1) − Σ(P2)] = (P1 + P2)µΓµ(P1, P2), (51)

whereΓµ is the quark-gluon vertex. In the following, however, we will not need
HTL vertices.

3. Step: Effective Perturbation Theory.Now we can use the HTL resummed propa-
gators and vertices as in ordinary perturbation theory. However, they are only nec-
essary if all energies and momenta of the external legs of theGreen functions under
consideration are soft, i.e. of ordergT . Otherwise bare Green functions are suffi-
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cient. This can be seen, for instance, in the case of the quarkpropagator Eq. (48).
If p0 andp are soft, the HTL self-energy in Eq. (48) is of the same ordergT ac-
cording to Eqs. (45), (46), and (47). Hence it cannot be neglected in the propagator.
In other words, the HTL resummed propagator contributes to the same order as the
bare propagator if its energy and momentum are soft. On the other hand, ifp0 or p
are hard, i.e. of orderT or larger, the bare propagator is sufficient [33]17 .

At the same time, the use of HTL self-energies takes into account important medium
effects of the QGP (see e.g. [38]). For example, the HTL gluonself-energy con-
tains Debye screening, which improves the IR behavior of IR divergent diagrams
and quantities, in which a gluon is exchanged. On the other hand, there is no static
magnetic screening in the HTL gluon polarization tensor, which requires a non-
perturbative treatment [55,230]. Therefore certain quantities, e.g. the damping rates
of a hard quark or gluon, which are quadratically IR divergent using a bare gluon
propagator, are (even to leading order) still logarithmically IR divergent if the HTL
gluon propagator is taken.

After all, the HTL resummation technique means a very important progress for
finite temperature gauge theories since it leads to gauge invariant results, in which,
compared to naive perturbation theory, diagrams of the sameorder are included. In
many cases the HTL method allows (at least to leading order) IR finite results in
contrast to naive perturbation theory. An important example for this is the photon
production rate discussed below.

The HTL resummation technique has been extended to a finite chemical potential
[42,231], which is important for treating a finite baryon density in heavy-ion col-
lisions, in particular at SPS, and in quark matter, which might exist in the interior
of neutron stars [232]. In particular, the HTL method has been used to describe
color superconductivity in dense quark matter [233]. It hasalso been extended to
a chemically non-equilibrated QGP [48,138], as it is expected at RHIC and LHC
[114].

The HTL resummation technique has been adopted for calculating important prop-
erties of the QGP, such as parton damping rates, transport coefficients, the energy
loss of energetic partons, and dilepton and photon production rates18 . Here we
want to discuss the calculation of the production rate of energetic photons in this
way. For this purpose, we start from the definition of the photon rate using the
polarization tensor Eq. (3). To lowest order in the HTL improved perturbation the-
ory we have to consider the diagram shown in Fig. 3. Here we have replaced one
bare quark propagator by a HTL resummed one. Due to energy-momentum con-
servation, only one quark momentum can be soft in the case of energetic photons
(E ≫ T ). Therefore, we do not need to dress both quark propagators at the same

17 This cannot be seen from Eqs. (45) to (47) since Eq. (47) has been derived under the
assumptionp0 ∼ p ∼ gT .
18 For a review and references on these applications see e.g. [37,234].
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time. Also it is not necessary to use an effective quark-photon propagator. This is
different for soft photons and dileptons, where two HTL propagators and vertices
have to be considered [225,235]. Note that the polarizationtensor of Fig. 3 has an
imaginary part also for on-shell photons, in contrast to a bare quark loop since the
HTL self-energy contained in the effective quark propagator has an imaginary part.
Therefore, the physical process leading to the photon production from Fig. 3 is re-
lated to Landau damping, i.e. the interaction of a soft quarkwith thermal gluons.
Note also that the diagram of Fig. 3 contains infinitely many quark-gluon loops as
the HTL quark self-energy is resummed in the effective propagator in Fig. 43. The
imaginary part of Fig. 3 corresponds therefore to the scattering diagrams of Fig.
1 (quark-antiquark annihilation, Compton scattering), where the exchanged bare
quark is replaced by an in-medium quark.

Since the diagram of Fig. 3 has to be considered only if the dressed quark line is
soft, we introduce a separation scaleqc. For soft quark momenta, we calculate the
photon production rate from Fig. 3, whereas for hard momentawe adopt a bare
quark propagator as in Fig. 1 and Fig. 2. Hence, the hard contribution for the rate
follows from the result of Appendix A, Eq. (44), where the IR cutoff Λ is replaced
by the separation scaleqc. AssuminggT ≪ qc ≪ T , which is possible in the
weak coupling limit, the arbitrary separation scale cancels once the hard and the
soft contributions are added, as it should be the case for a consistent leading-order
calculation [40].

Following Kapusta et al. [25], the imaginary part of the polarization tensor of Fig. 3,
entering the soft photon production rate according to Eq. (3), can be written as

ImΠµ
µ(E)=

5e2

12π

∞
∫

0

dk

k
∫

−k

dω [(k − ω)ρ+(ω, k)

+(k + ω)ρ−(ω, k)] θ(q2
c − k2 + ω2), (52)

where we have assumed two massless quark flavors andE ≫ T . Furthermore, we
have chosen a covariant separation scale, i.e.ω2 − k2 < q2

c , in accordance with the
covariant cutoffΛ2, introduced in Eq. (41), in the hard part. Hereρ± are the spectral
functions of the effective quark propagator Eq. (49) definedas

ρ±(ω, k) =
1

π
Im

1

D±(ω, k)
. (53)

In the HTL approximation these spectral functions are givenby [225]

ρ±(k0, k) =
k2

0 − k2

2m2
q

[δ(k0 − ω±) + δ(k0 + ω∓)] + β±(k0, k)θ(k
2 − k2

0). (54)
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The first part of Eq. (54) corresponds to the pole contribution of the HTL propaga-
tor. The second part, corresponding to the cut contributionfrom the imaginary part
of the HTL quark self energy, reads

β±(k0, k) =−m
2
q

2
(±k0 − k)

{

[

k(−k0 ± k) +m2
q

(

±1 − ±k0 − k

2k
ln
k + k0

k − k0

)]2

+
[

π

2
m2

q

±k0 − k

k

]2
}−1

. (55)

For real photons, only the cut contribution Eq. (55) has to beconsidered, since
ω2 < k2 according to Eq. (52), i.e. the exchanged quark is time-like. For virtual
photons decaying into dileptons, on the other hand, also thepole part of Eq. (54)
contributes [236].

Due to the complex momentum dependence of Eq. (55), the integrations in Eq. (52)
cannot be done analytically [25,41]. However, using generalized Kramers-Kronig
relations, the so-called Leontovich relations [237], it can be shown, that only the
high energy limit of the HTL quark propagator is needed. Thenthe imaginary part
of the photon polarization tensor Eq. (52) reduces to [237]

ImΠµ
µ(E) = − 5e2

12π

qc
∫

0

dq q
2m2

q

q2 + 2m2
q

, (56)

where2m2
q = g2T 2/3 is the high energy limit of the effective quark mass,ω2

+(p→
∞) = p2 + 2m2

q . As a matter of fact, the approach based on the Leontovich re-
lation allows in principle a more general evaluation of the photon production rate
and other quantities beyond the HTL approximation if the high energy limit of the
full quark propagator is known [237]. The integral in Eq. (56) can easily be done
yielding

ImΠµ
µ(E) = − 5e2

12π
m2

q ln
q2
c

2m2
q

, (57)

where we assumedqc ≫ mq in accordance withgT ≪ qc ≪ T . This result was
also found independently by Kapusta et al. [25] and Baier et al. [41], where the
factor 1/2 under the logarithm could be derived only numerically usingthe full
spectral functions Eq. (54).

Combining the soft part with the hard part Eq. (44), where theIR cutoff Λ is re-
placed by the separation scaleqc, we obtain the final result Eq. (5) for the production
rate of energetic photons to leading logarithm

dN

d4xd3p
=

5

18π2
ααs e

−E/T T 2

E
ln

0.2317E

αsT
. (58)
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Here the separation scaleqc, serving as an IR cutoff for the hard part, drops out as
expected [40] since the hard part and the soft part have the same factors in front of
the logarithm. Using the Boltzmann approximation for the hard part (see Appendix
A) and the Leontovich relation for the soft part, the photon production rate to lowest
order in the HTL approximation Eq. (58) could be derived analytically. At finite
chemical potential [43] and in non-equilibrium [48] the Boltzmann approximation
cannot be used since there is no cancellation of the hard and the soft parts in this
case. Using the correct quantum statistical distributions, the separation scale drops
out. However, the rates have to be calculated numerically inthese cases.

In the leading logarithm approximation, the photon rate Eq.(58) agrees with the re-
sult obtained from the diagrams of Fig. 1 in naive perturbation theory if the thermal
quark mass is used as IR cutoff. The HTL method allows to compute also the coeffi-
cient under the logarithm, i.e. the next term beyond the leading logarithm. However,
as discussed in Section 2.1.1, this term is not complete but there are higher order
contributions within the HTL improved perturbation theoryto the same order.
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