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1. Introduction

The net charge event-by-event fluctuations are considered as indicators of the for-
mation of a quark gluon plasma (QGP) in ultrarelativistic heavy ion collisions [1–5]. To
characterize numerically the magnitude of these fluctuations, one usually uses the so-called
D measure:

D = 4
DQ

〈n〉 = 4 ωQ (1)

which provides a measure of the net charge fluctuations per unit entropy. Here, DQ and
ωQ = DQ/〈n〉 are the variance and reduced variance of the net charge, Q = n+ − n−,
n = n+ + n−. The n+ and n− are the number of positive and negative particles observed
in some acceptance window, e.g., in some pseudorapidity interval δη.

The net charge fluctuations were estimated using various theoretical approaches with
the general conclusion that the hadronization of QGP should lead to a final state character-
ized by a sharp decrease in the net charge fluctuations in comparison with hadronic gas
(HG). For example, in the article [1], it was shown that in a simple model, if we neglect
quark–quark interactions, the D turns out to be about 4 times less for QGP than for HG
(see further discussion of this topic in [4,5]).

In modern experiments, net charge fluctuations are usually studied [3–5] by calculating
the so-called dynamic fluctuation variable νdyn, defined as:

νdyn(δη) ≡ 〈n+(n+ − 1)〉
〈n+〉2

+
〈n−(n− − 1)〉
〈n−〉2

− 2
〈n+n−〉
〈n+〉〈n−〉

. (2)

This variable is simply connected with the D measure [4,5]:

D = 〈n〉νdyn(δη) + 4 (3)

In some cases, it is more convenient to modify the normalization of the dynamic
fluctuation variable νdyn by introducing

νs(δη) ≡ − 1
1/〈n+〉+ 1/〈n−〉

νdyn(δη) (4)

Symmetry 2022, 14, 21. https://doi.org/10.3390/sym14010021 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14010021
https://doi.org/10.3390/sym14010021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym14010021
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14010021?type=check_update&version=1


Symmetry 2022, 14, 21 2 of 12

(see Formula (3) in [6]). This variable is closely connected with the so-called balance
function (BF) [7], usually defined as

B(η1, η2) =
1
2

[
ρ+−(η1, η2)

ρ+(η1)
+

ρ−+(η1, η2)

ρ−(η1)
− ρ++(η1, η2)

ρ+(η1)
− ρ−−(η1, η2)

ρ−(η1)

]
, (5)

where ρ+(η), ρ+−(η1, η2), etc., are the inclusive and double inclusive pseudorapidity dis-
tributions of corresponding charged particles (for the correspondence with other possible
alternative definitions of the BF see, e.g., [8]).

The relationship between the νs(δη) and the B(η1, η2) in the simplest way can be
established in the mid-rapidity region at LHC energies, where the translation invariance
in rapidity is valid. In this case the single inclusive distributions are constant: ρ+(η) =
〈n+〉/δη ≡ ρ0

+, ρ−(η) = 〈n−〉/δη ≡ ρ0
− and the double inclusive distributions depend

only on the differences of their arguments: ρ+−(η1, η2) = ρ+−(η1 − η2), etc. Hence, the BF
also will depend only on the η1 − η2 ≡ ∆η.

The charge symmetry is also well satisfied for this case, ρ0
+ = ρ0

−, and

〈n+〉 = 〈n−〉 = 〈n〉/2 , ωn+ = ωn− , ωn+ ≡ Dn+/〈n+〉 , Dn+ ≡ 〈n2
+〉 − 〈n+〉2 . (6)

Then, the expressions (4) for νs(δη) and (5) for B(η1, η2) are reduced to

νs(δη) = − 〈n〉
4

νdyn(δη) =
〈n+n−〉 − 〈n+(n+ − 1)〉

〈n+〉
= 1 +

〈n+n−〉 − 〈n2
+〉

〈n+〉
(7)

(see Formula (4) in [6]) and

B(η1 − η2) =
ρ+−(η1 − η2)− ρ++(η1 − η2)

ρ0
+

. (8)

Then, by the direct integration of (8) we get

νs(δη) =
1

δη

∫
δη

dη1

∫
δη

dη2 B(η1 − η2) , (9)

where we have taken into account the normalization conditions (15) and (16) (see the
next section).

Since, by the definition (5), the BF is symmetric: B(∆η) = B(−∆η), the integral (9) can
be written as follows (see, e.g., Appendix A in the paper [9]):

νs(δη) =
1

δη

∫ η+δη

η
dη1

∫ η+δη

η
dη2 B(η1 − η2) =

1
δη

∫ δη/2

−δη/2
dη1

∫ δη/2

−δη/2
dη2 B(η1 − η2)

=
1

δη

∫ δη

−δη
d(∆η) B(∆η) tδη(∆η) =

2
δη

∫ δη

0
d(∆η) B(∆η) (δη − ∆η) , (10)

where the tδη(∆η) is the usual phase space “triangular” weight function:

tδη(∆η) = [θ(−∆η)(δη + ∆η) + θ(∆η)(δη − y)] θ(δη − |∆η|) ≥ 0 (11)

(see Figure A.1 in the paper [9]).
In paper [7], the authors state that “The BF would represent the probability that the

balancing charges were separated by ∆η (in our formalism we include a division by ∆η
to express B(∆η) as a density)”. Nevertheless, in the Introduction of the paper [5], it is
mentioned that the value of νdyn(δη) can be both negative and positive: “A negative value
of νdyn signifies the dominant contribution from correlations between pairs of opposite
charges. On the other hand, a positive value indicates the significance of the same charge
pair correlations”.
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By Formula (4), this means that in some cases the νs(δη) can take negative values.
Then, by Formula (10), we see that in this case the BF must also be negative at least at
some values of ∆η to ensure the negative value of the integral (10), as the triangular
weight function (11) is positive: tδη(∆η) ≥ 0. However, if the νs(δη) and the BF B(∆η) can
take negative values they cannot have any probabilistic interpretation, in particular that
mentioned in the paper [7].

In the present short note we explicitly confirm this fact by direct calculations for a
very simple toy model.

Note also that the νs(δη) is simply connected with the so-called strongly intensive
variable [10,11], Σ(n+, n−),

νs(δη) = 1− Σ(n+, n−) , (12)

analyzed earlier in [12] as Σ(n+
F , n−F ).

2. General Definitions and Relations

We start with the definitions of inclusive and double inclusive pseudorapidity distri-
butions of charged particles:

ρ±(η) ≡
dN±ch
dη

, ρ++(η1, η2) ≡
d2N++

ch
dη1 dη2

, ρ+−(η1, η2) ≡
d2N+−

ch
dη1 dη2

, (13)

which are normalized as follows: ∫
δη

dη ρ±(η) = 〈n±〉 , (14)

∫
δη

dη1

∫
δη

dη2 ρ++(η1, η2) = 〈n+(n+ − 1)〉 . (15)

∫
δη

dη1

∫
δη

dη2 ρ+−(η1, η2) = 〈n+n−〉 . (16)

Then, we define the two-particle correlation functions in a standard way [3]:

C++(η1, η2) ≡
ρ++(η1, η2)

ρ+(η1)ρ+(η2)
− 1 , C+−(η1, η2) ≡

ρ+−(η1, η2)

ρ+(η1)ρ−(η2)
− 1 . (17)

In the mid-rapidity region at LHC energies, when the translation invariance in rapidity
and the charge symmetry, mentioned above, take place, these formulae can be simplified,
using that

ρ+(η) = ρ−(η) = ρ0
+ = const = 〈n+〉/δη , (18)

ρ++(η1, η2) = ρ++(η1 − η2) , ρ+−(η1, η2) = ρ+−(η1 − η2)

and hence

C++(η1, η2) = C++(η1 − η2) , C+−(η1, η2) = C+−(η1 − η2) . (19)

Then, by (14)–(19), we have

ρ0
+ρ0

+

∫
δη

dη1

∫
δη

dη2 C++(η1 − η2) = 〈n+(n+ − 1)〉 − 〈n+〉2 . (20)

ρ0
+ρ0
−

∫
δη

dη1

∫
δη

dη2 C+−(η1 − η2) = 〈n+n−〉 − 〈n+〉〈n−〉 . (21)



Symmetry 2022, 14, 21 4 of 12

Using definition (7), we express the νs(δη) through the correlation functions C+− and C++

in the model independent way:

νs(δη) =
ρ0
+

δη

∫
δη

dη1

∫
δη

dη2 [C+−(η1 − η2)− C++(η1 − η2)] . (22)

Simultaneously, from Formula (8) for the BF, we have

B(η1 − η2) = ρ0
+ · [C+−(η1 − η2)− C++(η1 − η2)] . (23)

3. The Models with Independent Identical Sources

In models with independent identical sources, the following formula [9] for C(η1, η2)
takes place (see a simple proof in Appendix A):

C(η1, η2) =
Λ(η1, η2) + ωN

〈N〉 , (24)

where N is a number of sources, which fluctuates event by event around some mean value,
〈N〉, with some scaled variance, ωN = DN/〈N〉.

The Λ(η1, η2) is the two-particle correlation function characterizing a single source. It
is defined similarly to C(η1, η2), but takes into account only particles produced by a given
source:

Λ++(η1, η2) ≡
λ++(η1, η2)

λ+(η1)λ+(η2)
− 1 , Λ+−(η1, η2) ≡

λ+−(η1, η2)

λ+(η1)λ−(η2)
− 1 , (25)

where

λ±(η) ≡
dN±ch
dη

, λ++(η1, η2) ≡
d2N++

ch
dη1 dη2

, λ+−(η1, η2) ≡
d2N+−

ch
dη1 dη2

, (26)

are inclusive and double inclusive pseudorapidity distributions of charged particles pro-
duced by a given source. They are normalized as follows:∫

δη
dη λ±(η) = 〈µ±〉 , (27)

∫
δη

dη1

∫
δη

dη2 λ++(η1, η2) = 〈µ+(µ+ − 1)〉 . (28)

∫
δη

dη1

∫
δη

dη2 λ+−(η1, η2) = 〈µ+µ−〉 . (29)

In the mid-rapidity region at LHC energies, when the translation invariance in rapidity
and the charge symmetry take place, these formulae can again be simplified, using that

λ+(η) = λ−(η) = λ0
+ = λ0

− = const =
〈µ+〉

δη
=
〈n+〉

δη〈N〉 =
ρ0
+

〈N〉 , (30)

λ++(η1, η2) = λ++(η1 − η2) , λ+−(η1, η2) = λ+−(η1 − η2)

and hence

Λ++(η1, η2) = Λ++(η1 − η2) , Λ+−(η1, η2) = Λ+−(η1 − η2) . (31)

Then,

Λ++(η1 − η2) =
λ++(η1 − η2)

λ0
+λ0

+

− 1 , Λ+−(η1 − η2) =
λ+−(η1 − η2)

λ0
+λ0
−

− 1 . (32)
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Substituting the general connection (24) into Formula (22), we finally express the
νs(δη) through the correlation functions Λ+− and Λ++ of a single source:

νs(δη) =
λ0
+

δη

∫
δη

dη1

∫
δη

dη2 [Λ+−(η1 − η2)−Λ++(η1 − η2)] . (33)

Note that a dependence on 〈N〉 and ωN = DN/〈N〉 is canceled which proves the strongly
intensive behavior of this variable in the case with identical sources.

We also see this from the fact that Formula (33) coincides with the definition (7) when
replacing all engaged quantities with the corresponding ones for one source. That also can
be written as

νs(δη) =
〈n+n−〉 − 〈n+(n+ − 1)〉

〈n+〉
=
〈µ+µ−〉 − 〈µ+(µ+ − 1)〉

〈µ+〉
(34)

in any model with identical courses.
As mentioned in the Introduction, the νs(δη) is simply connected with the balance

function B(η1 − η2). In any model with identical independent sources in the central region,
where the translation invariance in rapidity and the charge symmetry take place, we have
(see, e.g., Section 5 of the paper [8]):

B(η1 − η2) = λ0
+ · [Λ+−(η1 − η2)−Λ++(η1 − η2)] . (35)

One can immediately obtain this formula by substituting (24) into (23) and taking into
account the relation (30).

Comparing Formulae (33) and (35), we see that the general relation (9)

νs(δη) =
1

δη

∫
δη

dη1

∫
δη

dη2 B(η1 − η2) ,

of course, is true in this particular case.

4. Toy Models with Sources Emitting Particles Uniformly Distributed in Rapidity

Let us consider at first a very simple model, when each source always produces only
one plus–minus pair, with plus and minus particles being uniformly distributed in some
wide interval (−Y/2, Y/2), Y � 1.

In this simple model,

λ0
+ =

1
Y

, λ++(η1 − η2) = 0 , λ+−(η1 − η2) =
1

Y2 . (36)

To test these formulae we can use the normalization conditions (27)–(29) in the whole
acceptance Y: ∫

Y
dη λ±(η) = 1 , (37)∫

Y
dη1

∫
Y
dη2 λ++(η1 − η2) = 0 . (38)∫

Y
dη1

∫
Y
dη2 λ+−(η1 − η2) = 1 . (39)

Then, by (32), we have

Λ++(η1 − η2) = −1 , Λ+−(η1 − η2) = 0 . (40)

As expected, we see no correlation between plus and minus particles produced from
the same source, Λ+−(η1 − η2) = 0, and a strong anticorrelation between plus and plus
particles from one source, Λ++(η1 − η2) = −1, because the only plus particle, produced
from a source, cannot be simultaneously at both η1 and η2 pseudorapidities.
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Substituting all this into Formula (33), we find

νs(δη) =
1

Yδη
δη2[0− (−1)] =

δη

Y
. (41)

The interpretation of the νs(δη) = δη
Y as the probability to find the negatively charged

particle in the rapidity interval δη under the condition that we already have the posi-
tively charged particle in this interval looks very suspicious. This is because, as we can
see from Formulae (40) and (41), this result arises not due to correlation between plus and
minus particles but due to a strong anticorrelation between plus and plus particles in this
simple model.

To verify these suspicions, let us consider a more sophisticated model, when each
source always produces two plus–minus pairs, with two plus and two minus particles
being uniformly distributed in some wide interval (−Y/2, Y/2), Y � 1.

In this version of the model,

λ0
+ =

2
Y

, λ++(η1 − η2) =
2

Y2 , λ+−(η1 − η2) =
4

Y2 . (42)

Again, we can test these formulae using the normalization conditions (27)–(29) in the whole
acceptance Y: ∫

Y
dη λ±(η) = 2 , (43)∫

Y
dη1

∫
Y
dη2 λ++(η1 − η2) = 2 . (44)∫

Y
dη1

∫
Y
dη2 λ+−(η1 − η2) = 4 . (45)

Then, by (32), we have

Λ++(η1 − η2) = −
1
2

, Λ+−(η1 − η2) = 0 . (46)

As expected, again, we see no correlation between plus and minus particles produced from
the same source, Λ+−(η1 − η2) = 0, and attenuation of the anticorrelation between plus
and plus particles from one source, Λ++(η1 − η2) = − 1

2 , because now two plus particles
are produced from a source and λ++(η1 − η2) =

2
Y2 > 0.

Substituting all this into Formula (33), we find that, again,

νs(δη) =
2

Yδη
δη2
[

0−
(
−1

2

)]
=

δη

Y
. (47)

It is easy to prove that in the model, when each source always produces k plus–minus
pairs, with k plus and k minus particles being uniformly distributed in some wide interval
(−Y/2, Y/2), Y � 1, we have

νs(δη) =
k

Yδη
δη2
[

0−
(
−1

k

)]
=

δη

Y
. (48)

The interpretation of the νs(δη) = δη
Y as the probability to find the negatively charged

particle in the rapidity interval δη under the condition that we already have the positively
charged particle in this interval still holds, since in each event we have an equal number
of plus and minus particles uniformly distributed in some wide interval (−Y/2, Y/2),
Y � 1, as in the initial version of the model with one charge pair production by a source.
Nevertheless, it looks strange since it based not on correlations between plus and minus
particles but on anticorrelations between plus and plus particles in this simple model.
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Note that, in this case, by Formula (35), the BF ("the probability density") is equal to
1/Y:

B(∆η) =
k
Y

[
0−

(
−1

k

)]
=

1
Y

, (49)

which after integration over rapidity interval δη by (10) again leads to Formula (48).

5. Toy Model with Production of Correlated Charge Pairs by a Source

As we can see in the previous section, this result, νs(δη) = δη
Y , arises due to plus–plus

anticorrelation, Λ++(η1 − η2) = − 1
k , in the version of the model with the production of

k independent plus–minus pairs by each source. After multiplying by λ0
+ = k

Y and the
integration, we just have this result.

So, in the present section we are trying to introduce some additional plus–plus corre-
lation, formulating a more complex version of the model.

5.1. Strict Correlation between Identical Charges from a Source

Let us consider at first the model in which each source always produces two plus–
minus pairs, so that the rapidities of both positive particles coincide and the same is true for
both minus particles (the maximally strong correlation between identical charges), whereas
the rapidities of the plus pair and the minus pair themselves are uniformly distributed in
some wide interval (−Y/2, Y/2), Y � 1.

In this version of the model,

λ0
+ =

2
Y

, λ++(η1 − η2) =
2
Y

δ(η1 − η2) , λ+−(η1 − η2) =
4

Y2 . (50)

Again, we can test these formulae using the normalization conditions (27)–(29) in the whole
acceptance Y: ∫

Y
dη λ±(η) = 2 , (51)∫

Y
dη1

∫
Y
dη2 λ++(η1 − η2) = 2 . (52)∫

Y
dη1

∫
Y
dη2 λ+−(η1 − η2) = 4 . (53)

Then, by (32) we have

Λ++(η1 − η2) =
Y
2

δ(η1 − η2)− 1 , Λ+−(η1 − η2) = 0 . (54)

As expected, we see again no correlation between plus and minus particles produced
from the same source, but we see now strong additional Y

2 δ(η1 − η2) correlation between
positive particles from one source.

Substituting all this into Formula (33), we find

νs(δη) =
2

Yδη

[
0 · δη2 −

(
Y
2
· δη − 1 · δη2

)]
=

2δη

Y
− 1 . (55)

In Appendix B, we verify this important result using the simple Formula (34).
In conclusion, we see that although for the whole interval at δη = Y we have νs(Y) = 1,

as expected, nevertheless, the value of the νs(δη) at δη < Y/2 becomes negative and
therefore cannot have any probabilistic interpretation. Note that by Formula (35), the BF in
this case looks like this

B(∆η) = −δ(∆η) +
2
Y

, (56)

which after the integration over the rapidity interval δη by (10) again leads to Formula (A9).
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5.2. Soft Correlation between Identical Charges from a Source

From the model construction, it is clear that if we use, instead of the δ-function, any
narrow enough distribution normalized by unity, we arrive at the same conclusion. Let us
use in this subsection, instead of the δ-function, the step distribution normalized to unity
and spread over the interval from −a to a (a > 0):

δ(∆η) → ha(∆η) ≡ 1
2a

θ(a− |∆η|) , (57)

In this case, for the version of the model described in the previous Section 5.1, we have

λ0
+ =

2
Y

, λ++(η1 − η2) =
2

Y− a/2
ha(η1 − η2) , λ+−(η1 − η2) =

4
Y2 . (58)

Using Formula (10), we can check that the factor 2/(Y− a/2) ensures the correct normal-
ization condition (28) for the λ++(η1 − η2):∫

Y
dη λ±(η) = 2 , (59)

∫
Y
dη1

∫
Y
dη2 λ++(η1 − η2) = (60)

=
∫ Y/2

−Y/2
dη1

∫ Y/2

−Y/2
dη2 λ++(η1 − η2) =

2
Y− a/2

∫ Y

−Y
d(∆η) ha(∆η) tY(∆η) = 2 ,∫

Y
dη1

∫
Y
dη2 λ+−(η1 − η2) = 4 . (61)

Then, by (32), we have

Λ++(η1 − η2) =
Y2

2Y− a
ha(η1 − η2)− 1 , Λ+−(η1 − η2) = 0 . (62)

By Formula (35), we find now the BF (see Figure 1):

B(∆η) = − Y
Y− a/2

ha(∆η) +
2
Y

. (63)

For |∆η| < a by (57), we have

B(∆η) = − Y
(2Y− a) a

+
2
Y

. (64)

It is easy to check that at |∆η| < a < (1− 1/
√

2)Y ≈ 0.29 Y the BF is negative, B(∆η) < 0,
and cannot be interpreted as a probability density (see Figure 1, plotted for Y = 10).

We can now calculate νs(δη) by the integration of the expression (63) over rapidity
interval δη using Formulae (9) and (10):

νs(δη) =
1

δη

∫ δη

−δη
d(∆η) B(∆η) tδη(∆η) = (65)

=
2δη

Y
− Y

(2Y− a) a δη

∫ δη

−δη
d(∆η) θ(a− |∆η|) tδη(∆η) .

Then, we find

νs(δη) =
2δη

Y
− 2− a/δη

2− a/Y
at δη > a , (66)

and

νs(δη) =
2δη

Y
− δη/a

2− a/Y
=

(
2
Y
− Y

(2Y− a) a

)
δη at δη < a . (67)
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This νs(δη) is plotted in Figure 2. From Formula (66), we see that at a→ 0 the νs(δη) go to
the result (55), obtained in Section 5.1.
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parameter a, characterizing the correlation length between identical charges (see Formula (57) in the
text), a = 4 (thick lines), a = 3 (dashed lines), a = 2 (dotted lines), a = 1 (dashed-dotted lines), and
a = 0.5 (thin lines), respectively.
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Figure 2. The same as in Figure 1, but for the observable νs(δη) ≡ − 〈n〉4 νdyn(δη), (7), as a function
of rapidity width of the observation window, δη, in the toy model with soft correlation between
identical charges, considered in Section 5.2.

By Formula (67), we see also that at

δη < a < (1− 1/
√

2)Y ≈ 0.29 Y (68)
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(the same condition as the condition obtained from Formula (64) for the BF), the νs(δη)
is negative, νs(δη) < 0 (see Figure 2, plotted for Y = 10), and cannot be interpreted as a
probability.

Note that this occurs for rather wide correlation function λ++(η1 − η2) (58), with a
compared to Y, as follows from Condition (68).

In Appendix C, we perform one more check of the obtained formulae. We analyze the
limiting cases of the model with a soft correlation between identical charges, given by a
function (see Formulae (57) and (58)):

λ++(∆η) =
2

Y− a/2
ha(∆η) =

1
(2Y− a) a

θ(a− |∆η|) , (69)

and formulated in the present Section 5.2 for an arbitrary value of the parameter a, 0 < a ≤
Y, which determines the correlation length. We show that, on the one hand, for a→ 0, the
model turns into a version with a strict correlation between identical charges considered in
Section 5.1, and on the other hand, for a = Y, it goes to the model with the production of
uncorrelated charge pairs by the source, discussed in Section 4.

We also see that the negative values of the BF B(∆η) at ∆η < a and the νs(δη) at
δη < a already occur when we introduce the rather weak correlation between same charge
particles with the value of a compared to Y, namely at a < (1− 1/

√
2)Y ≈ 0.29 Y, as

follows from Condition (68) (see Figures 1 and 2).

6. Summary

In this short note, by constructing a simple toy model, we explicitly demonstrate that
the values of the νs(δη) and hence the νdyn(δη), for which by (7) we have

νs(δη) ≡ − 〈n〉
4

νdyn(δη) ,

can be both negative and positive. Therefore, it cannot have any probabilistic interpretation,
such as, for example, the probability that balancing charges occur in the same rapidity
interval δη, which is discussed, e.g., in the paper [6] (see comments after Formula (4)).

Then, by the relation

νs(δη) =
1

δη

∫
δη

dη1

∫
δη

dη2 B(η1 − η2) ,

it follows that in this case the BF must also be negative at least for some values of
∆η = η1 − η2 to ensure the negative value of the integral. We also check this explicitly by
computing the BF in our toy model.

Since BF B(∆η) can take negative values, it also cannot have any probabilistic inter-
pretation in the general case. In particular, the BF cannot be interpreted as the probability
density for the balancing charges to occur separated by the rapidity interval ∆η, as was
formulated in the paper [7].
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Abbreviations
The following abbreviations are used in this manuscript:

BF Balance Function
QGP Quark–Gluon Plasma
HG Hadron Gas
LHC Large Hadron Collider

Appendix A

For a class of events with a fixed number of sources N, following the paper [3], we have

ρ(N)(η) = Nλ(η) , (A1)

ρ
(N)
2 (η1, η2) = Nλ2(η1, η2) + N(N − 1)λ(η1)λ(η2) . (A2)

Then, averaging over events with a different number of sources N, we find

ρ(η) = ∑
N

P(N)ρ(N)(η) = ∑
N

P(N)Nλ(η) = 〈N〉λ(η) , (A3)

ρ2(η1, η2) = ∑
N

P(N)ρ
(N)
2 (η1, η2) = 〈N〉λ2(η1, η2) + 〈N(N − 1)〉λ(η1)λ(η2) . (A4)

Using Definitions (17) and (25), we have

C(η1, η2) =
ρ2(η1, η2)

ρ(η1)ρ(η2)
− 1 =

〈N〉[λ2(η1, η2)− λ(η1)λ(η2)]

〈N〉λ(η1)〈N〉λ(η2)
+
〈N2〉
〈N〉2 − 1 = (A5)

=
Λ(η1, η2)

〈N〉 +
〈N2〉 − 〈N〉2
〈N〉2 =

Λ(η1, η2) + ωN
〈N〉 .

The latter coincides with Formula (64) in the paper [9].

Appendix B

In this Appendix, we verify Formula (55) for νs(δη) using Formula (34). For the
version of the model formulated in Section 5.1, we have

〈µ+〉 = ∑
µ+≥1

P(µ+)µ+ = P(1) · 1 + P(2) · 2 = 0 · 1 + δη

Y
· 2 = 2

δη

Y
, (A6)

〈µ+µ−〉 = ∑
µ+≥1;µ−≥1

P(µ+, µ−)µ+, µ− = P(1, 1) · 1 + P(1, 2) · 2 + P(2, 1) · 2 + P(2, 2) · 4 (A7)

= 0 · 1 + 0 · 2 + 0 · 2 + δη

Y
δη

Y
· 4 = 4

(
δη

Y

)2
,

〈µ+(µ+ − 1)〉 = ∑
µ+≥2

P(µ+)µ+(µ+ − 1) = P(2) · 2 =
δη

Y
· 2 = 2

δη

Y
. (A8)

Then, by Formula (34), we find

νs(δη) =
〈µ+µ−〉 − 〈µ+(µ+ − 1)〉

〈µ+〉
=

4
(

δη
Y

)2
− 2 δη

Y

2 δη
Y

=
2δη

Y
− 1 , (A9)

that coincides with (55).
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Appendix C

In this Appendix, we consider the limit a → Y for the version of the model with
soft correlation between identical charges, considered in Section 5.2 and defined by
Formulaes (57) and (58). It is clear that the case a = Y for this model corresponds to
the absence of correlation between the same charged particles from the source. Hence,
in this case, we have the source always emitting two pairs of uncorrelated plus–minus
particles. This version of the model was already considered in Section 4 (the case with
k = 2).

Indeed, we see that if we put a = Y into Formula (58), then Formula (58) for λ++(η1−
η2) is reduced to (42):

λ++(η1 − η2) =
2

Y− a/2
ha(η1 − η2) →

2
Y2 .

Formula (62) for Λ++(η1 − η2) is reduced to (46):

Λ++(η1 − η2) =
Y2

2Y− a
ha(η1 − η2)− 1 → − 1

2
.

Formula (63) for B(∆η) is reduced to (49):

B(∆η) = − Y
Y− a/2

ha(∆η) +
2
Y
→ 1

Y
.

Finally, Formula (67) for νs(δη) is reduced to (47):

νs(δη) =

(
2
Y
− Y

(2Y− a) a

)
δη → δη

Y
.
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