MPD PID II

A.S.Chernyshov, L.V.Malinina (SINP MSU)

Sample and track selection

• Sample location:

/eos/nica/mpd/sim/data/exp/dst-BiBi-09GeV-mp07-20-pwg3-250ev/BiBi/09.0GeV-0-14fm/UrQMD/BiBi-09GeV-mp07-20-pwg3-250ev-1

• For parameters extraction and PID tracks with $N_{\text{hits}} \ge 15$ were selected.

dE/dx PID parameters extraction

- ROOT's **FitSlicesY()** applies gaussian fit for each slice along y-axis of the histogram;
- Extracted mean and standard deviation values for each particle type are used for PID on all momentum interval.

The following n_{σ} -cut is applied based on extracted information

$$|dE/dx - \mu_E(p)| < n_\sigma \sigma_E(p)$$

Extracted $\mu_E(p)$ and $\sigma_E(p)$ are saved in a separate root-file as graphs. Later **Eval()** method is called to evaluate them.

dE/dx PID parameters extraction

m² PID parameters extraction

• Relative deviation distribution of *m*² for each particle type is measured;

• Extracted mean and standard deviation values for each particle type are used for PID at high momenta.

The following n_{σ} -cut is applied based on extracted information

$$\frac{m_{TOF}^2 - m^2}{m^2} - \mu_m < n_\sigma \sigma_m$$

The same approach may be utilized for $1/\beta$ PID at intermediate momenta. However, m^2 cuts can effectively replace $1/\beta$ cuts at both intermediate and high momenta.

Pions dE/dx and $m^2 n_{\sigma}$ -cuts

- *dE/dx* cut is applied on all momentum interval;
- *m*² cut (and 1/β cut, if in use) is applied after a certain momentum threshold (specific for each particle type), e.g. 0.5 GeV/c for pions;
- n_{σ} parameter adjustment is required to achieve adequate efficiency, e.g. $n_{\sigma} = 5$ for m^2 for pions, as their relative m^2 deviation distribution is wider at low momenta.

Pions purity/contamination & miniDST comparison DST sample DST sample

$$f(p) = \frac{dN_{true}/dp}{dN_{meas}/dp} \quad \text{- correctly identified}$$

Contamination

$$c(p) = \frac{dN_{false}/dp}{dN_{meas}/dp} \quad \text{- incorrectly identified} \\ \text{- all identified}$$

- Noticeable contamination with electrons at low momenta caused by *dE/dx* line intersection;
- Overall agreement with miniDST PID result in terms of purity.

Kaons n_o-cuts & purity/contamination Bi+Bi VSm = 9 GeV K'K' Bi+Bi VSm = 9 GeV

Protons n_o-cuts & purity/contamination

Protons/antiprotons purity comparison

- Separate purity measurement for antiprotons is required due to their relatively low multiplicity;
- High misidentification level at low momenta, because of apparent wrong charge sign reconstruction;
- Noticeable contamination with pions at high momenta.

PID efficiency for hadrons

Efficiency $f(p) = \frac{dN_{pid}/dp}{dN_{viable}/dp} - \text{identified}$ - selected for identification

- High efficiency at low momenta, drop at threshold momenta due to TOF match requirement for *m*² PID;
- Overall agreement with miniDST PID result in terms of efficiency;
- Lower post-threshold efficiency in DST sample compared to miniDST result.

p (GeV/c)

BACKUP

Separate m² distributions for hadrons and electrons ¹⁴ ¹⁵ ¹⁵

14

Separate 1/β distributions for hadrons and electrons Bi+Bi (Sm = 9 GeV π⁺π⁻ Bi+Bi (Sm = 9 GeV π⁺π⁻ Bi+Bi (Sm = 9 GeV κ⁻)

15

Separate 1/β relative deviation distributions Bi+Bi VSNN = 9 GeV π⁺π⁻

