

WARSAW UNIVERSITY OF TECHNOLOGY

Perspectives for baryon-baryon Femtoscopy at MPD Daniel Wielanek Warsaw University of Technology, Faculty of Physics

MPD-PWG3 Meeting, October 2021

Outline

Introduction Femtoscopy Femtoscopy of protons Femtoscopy of exotic hadrons Model predictions Pans for the future

Warsaw University of Technology

WUT Group

Professors: A. Kisiel, J. Pluta PhDs: D. Wielanek

PhD students: M. Milewicz-Zalewska <- PhD thesis related to B-B correlations @ MPD

Femtoscopy

Technique used to extract information about spatio-temporal structure of event Base on two particle correlations Correlation function defined as

 $q = \sqrt{(p_1 - p_2)^2 - (E_1 - E_2)^2}$ $C(q) = \frac{P(p_1, p_2)}{P(p_1)P(p_2)}$

Theoretical shape of the CF

Let's consider noninteracting bosons with spin zero, single particle probability of emission $\rho(x) \approx e^{-\left(\frac{x^2}{2R^2}\right)}$ Probability of pair emission is: $\rho(\Delta x)$ Influence of quantum statistic term: $|\Psi(\Delta x, \Delta p)| =$ Correlation function $C(q) = \int \rho(x_1, p_1) \rho(x_2, p_2) |\Psi|$

$$z \approx e^{-\left(\frac{\Delta x^2}{4R^2}\right)} R$$

$$q)|^2 = 1 + \cos(\Delta x q)$$

$$(x_1, p_1, x_2, p_2) \Big|^2 dx_1 dx_2 = 1 + e^{-q^2 R^2}$$

Theoretical shape of the CF

Let's consider noninteracting bos

Probability of pair emission is:

Influence of quantum statistic ter

Correlation function

 $C(q) = \int \rho(x)$

Applications of femtoscopy

Known interactions ($|\Psi(x_1, p_1, x_2, p_2)|^2$)e.g. proton-proton:

Warsaw University of Technology

 $C(q) = \int \rho(x_1, p_1) \rho(x_2, p_2) |\Psi(x_1, p_1, x_2, p_2)|^2 dx_1 dx_2 \to \rho(x_1, p_1) \rho(x_2, p_2)$ Unknown interactions, known/assumed size of the source $(\rho(x_1, p_1)\rho(x_2, p_2))$ e.g. lambda-lambda: $C(q) = \int \rho(x_1, p_1)\rho(x_2, p_2) |\Psi(x_1, p_1, x_2, p_2)|^2 dx_1 dx_2 \rightarrow |\Psi(x_1, p_1, x_2, p_2)|^2$

Plan of work

Step one: look at the models!

Warsaw University of Technology

UrQMD 3.4 AuAu central 0-5%

Warsaw University of Technology

collisions, V. P. Konchakovski et al.

STAR AuAu @ 11.5 GeV C = 0-5 %

UrQMD AuAu @ 11 GeV 10-1 C = 0-5%

D. Wielanek PhD thesis

Warsaw University of Technology

War of Technology

Proton-proton estimation of source emission function (central collision, midrapidity, gives radius at range 3-3.5 fm. Source is well approximated by gaussian shape.

Warsaw University of Technology

Problem of residual correlations: We cannot fit p-p function like this: We should do this like this:

Warsaw University of Technology

13

$C(q) = N(1 + \lambda C_{pp}(q))$

$C(q) = N(1 + \lambda_{pp}C_{pp}(q) + \lambda_{p\Lambda}C_{p\Lambda}(\tilde{q}) + \lambda_{\Lambda\Lambda}C_{\Lambda\Lambda}(\tilde{q}) + \cdots)$

Results of analysis with UrQMD 7 GeV beam – no two particle cuts Details: http://wielanek.fizyka.pw.edu.pl/pwg3_temp/cf_proton/

Warsaw University of Technology

14

cf_NumDivided

Study the properties of strong interaction Looking for exotic states of matter

Warsaw University of Technology

15

ΛΛ Correlation Function in Au+Au collisions at sNN=\sqrt{s_{NN}}=sNN = 200 GeV, Phys.Rev.Lett. 114 (2015) 2, 022301, L. Adamczyk et al..

Test of UrQMD model: UrQMD centrality: 0-5% Na49 centrality: 0-10%

Warsaw University of Technology

Test of UrQMD model: UrQMD centrality : 0-5% Na49 centrality: 0-10%

Warsaw University of Technology

The possibility of extraction of Lambda particles:

- Cuts (mostly inspired by STAR):
 - 20 < hits TPC
 - 2> $|n\sigma_{proton}|$, 3> $|n\sigma_{pion}|$
 - DCA_{proton}>0.6 cm DCA_{pion}>1.5 cm
 - $DCA_{pv} < 0.4 \text{ cm}$
 - $DCA_{1to2} < 0.8 \text{ cm}$
 - Decay length > 7cm
 - VO_{mass} 1.112-1.120
- Data sample:
 - 6.7 M events BiBi @ 9GeV (mass production)
- Helix model
- Link to report: <u>http://wielanek.fizyka.pw.edu.pl/pwg3_temp/v0test/</u>

Warsaw University of Technology

Estimated purity >90% efficiency ~8% in kin range |η|<1, 0.2<p_T<4 GeV

Simulation BiBi 9 GeV central prod.

http://wielanek.fizyka.pw.edu.p <u>l/pwg3_temp/v0test/</u>

Warsaw University of Technology

19

p_⊤vs η

Ok let's put all stuff together:

Estimation of minimumm bias events to get ONE correlation function with R=3.5 fm. decays)

Warsaw University of Technology

- UrQMD based simulations 1 M events, only particles from UrQMD taken into account (no weak

Proton-proton 4 GeV

Proton-proton 11 GeV

Warsaw University of Technology

Lambda-lambda 11 GeV

Warsaw University of Technology

Lambda-lambda 8 GeV

Warsaw University of Technology

Lambda-lambda 4 GeV

Warsaw University of Technology

Estimation attempt no 2.

- Estimation of pairs from UrQMD with k*<0.03 GeV/c 1M of events per energy, link to analysis output: $\sqrt{s_{NN}} = 4 \frac{\text{http://wielanek.fizyka.pw.edu.pl/pwg3_temp/uboot_4/}{1}$ $\sqrt{s_{NN}} = 6 \frac{\text{http://wielanek.fizyka.pw.edu.pl/pwg3_temp/uboot_6/}{100}}$ $\sqrt{s_{NN}} = 8 \frac{\text{http://wielanek.fizyka.pw.edu.pl/pwg3_temp/uboot_8/}{100}}$ $\sqrt{s_{NN}}$ =11 <u>http://wielanek.fizyka.pw.edu.pl/pwg3_temp/uboot_11/</u> Cuts: $0.4 < p_T < 4 \text{ GeV/c}$
- |η|<1

Number of pairs multiplied by 10⁶ 4 GeV:

Centrality	Proton-proton	Lambda-lambda	Proton-Lambda	Proton-antiproton
Minimum bias	19 506+/- 140	72+/- 8	2 252+/-47	0+/- 0
0-10%	116 504+/-1082	442+/-67	14 373+/- 380	0+/- 0
10-20%	50 043+/- 722	219+/-48	5 675+/- 243	0+/- 0
20-30%	20 069+/- 439	67+/-25	1 757+/- 130	0+/- 0

Number of pairs multiplied by 10⁶ 6 GeV:

Centrality	Proton-proton	Lambda-lambda	Proton-Lambda	Proton-antiproton
Minimum bias	10 578+/- 103	135+/-12	2 250+/-47	21+/- 5
0-10%	65 434+/- 807	866+/-93	14 582+/- 381	129+/-36
10-20%	25 385+/- 513	321+/-58	5 065+/- 229	31+/-18
20-30%	10 335+/- 316	116+/-33	2 202+/- 146	19+/-14

Number of pairs multiplied by 10⁶ 8 GeV:

Centrality	Proton-proton	Lambda-lambda	Proton-Lambda	Proton-antiproton
Minimum bias	7 249+/-85	143+/-12	1 979+/-44	80+/- 9
0-10%	45 760+/- 677	981+/-99	12 808+/- 358	400+/-63
10-20%	17 141+/- 422	332+/-59	4 565+/- 218	176+/-43
20-30%	6 992+/- 260	58+/-24	1 676+/- 127	116+/-33

Number of pairs multiplied by 10⁶ 11 GeV:

Centrality	Proton-proton	Lambda-lambda	Proton-Lambda	Proton-antiproton
Minimum bias	5 124+/-72	141+/-12	1 572+/-40	186+/-14
0-10%	32 200+/- 566	956+/-98	10 069+/- 317	986+/-99
10-20%	12 270+/- 357	353+/-61	3 841+/- 200	457+/-69
20-30%	4 728+/- 214	68+/-26	1 344+/- 114	232+/-47

Centrality	Proton-proton	Lambda-lambda	Proton-Lambda	Proton-antiproton
Minimum bias	19 506+/- 140	72+/- 8	2 252+/-47	0+/- 0
0-10%	116 504+/-1082	442+/-67	14 373+/- 380	0+/- 0
10-20%	50 043+/- 722	219+/-48	5 675+/- 243	0+/- 0
20-30%	20 069+/- 439	67+/-25	1 757+/- 130	0+/- 0

Warsaw University of Technology

snn=4gev

Residual correlations

100 III Fraction [%]) 90 80 70 60 50 40 30 20 10 0<u>`</u> 0.2 0.4 0.6

Warsaw University of Technology

Residual correlations

Warsaw University of Technology

Residual correlations

Warsaw University of Technology

Summary

Conclusions:

first estimation of needed statistic is completed Promising results for proton-proton measurements Plans: studies with different models (vHLLE, PHSD ...)

estimation of systematic uncertainty

further development of NicaCorrFit

- study of detector performance (splitting, merging, selection of primary/secondary particles)

Thank you for your attention

Cuts were optimized for AuAu collisions from old data (2010)

Warsaw University of Technology

