vHLLE+UrQMD model

Iu. Karpenko, P. Huovinen, H.Petersen, M. Bleicher, Phys.Rev. C 91, 064901 (2015)

Pre-thermal phase

UrQMD

Parameters τ_0 , R_{\perp} , R_{η} and η/s adjusted using basic observables in the RHIC BES-I region.

$\sqrt{s_{ m NN}}$ [GeV]	$ au_0 \; [{ m fm}/{ m c}]$	R_{\perp} [fm]	R_{η} [fm]	η/s
7.7	3.2	1.4	0.5	0.2
8.8 (SPS)	2.83	1.4	0.5	0.2
11.5	2.1	1.4	0.5	0.2
17.3 (SPS)	1.42	1.4	0.5	0.15
19.6	1.22	1.4	0.5	0.15
27	1.0	1.2	0.5	0.12
39	0.9	1.0	0.7	0.08
62.4	0.7	1.0	0.7	0.08
200	0.4	1.0	1.0	0.08

Model tuned by matching with existing experimental data from SPS and BES-I RHIC Hydrodynamic phase

vHLLE (3+1)-D viscous hydrodynamics

EoS to be used in the model

- Chiral EoS crossover transition
 J. Steinheimer et al., J.
 - Phys. G 38, 035001 (2011)
- Hadron Gas + Bag Model 1st-order phase transition
 P. F. Kolb et al., Phys.Rev. C 62, 054909 (2000)

Hydrodynamic phase lasts longer with 1PT, especially at lower energies but cascade smears this difference.

Hadronic cascade

UrQMD

Pion emission time

- (a) after hydrodynamic phase
- (b) after cascade

vHLLE+UrQMD model

Time distributions with VHLEE and vHLLE+UrQMD

vHLEE+UrQMD model with both EoS Olga's selections |eta| < 1 & pT>0.5 GeV/c

π⁺⁻, 7.7 GeV

Pion emission time after hydrodynamic phase

Pion emission time after cascade

π⁺⁻, 11.5 GeV

Pion emission time after hydrodynamic phase

Pion emission time after cascade

Our meeting Aug.2020

Space-time distributions with vHLLE: tau

vHLEE+UrQMD model with both EoS Olga's selections |eta| < 1 &

π⁺⁻. 7.7 GeV

π⁺⁻. 11.5 GeV

Pion emission time after hydrodynamic phase

pT>0.5 GeV/c

$\tau_0 = 2R/\sqrt{(\sqrt{s_{\rm NN}}/2m_N)^2 - 1},$							
$\sqrt{s_{ m NN}}$ [GeV]	$ au_0 \; [{ m fm}/{ m c}]$	R_{\perp} [fm]	R_{η} [fm]	η/s	0		
7.7	3.2	1.4	0.5	0.2			
8.8 (SPS)	2.83	1.4	0.5	0.2			
11.5	2.1	1.4	0.5	0.2	0		
17.3 (SPS)	1.42	1.4	0.5	0.15			
19.6	1.22	1.4	0.5	0.15			
27	1.0	1.2	0.5	0.12	0		
39	0.9	1.0	0.7	0.08			

1.0

1.0

0.7

1.0

0.7

0.4

 $\tau = \sqrt{t^2 - z^2}$

Pion emission time after hydrodynamic phase

Pion emission from the edge of fireball is rather strong effect In vHLLE. Such pions are seen even after cascade. Cut on pT>0.5 kill \sim 50% of such pions. Strong dependence on EoS.

Our meeting Aug.2020

62.4

200

Time distributions with VHLEE and vHLLE+UrQMD

vHLEE+UrQMD model with both EoS Olga's selections |eta| < 1 & pT>0.5 GeV/c

π⁺⁻, 7.7 GeV

π⁺⁻, 11.5 GeV

Pion emission for 1PT lasts longer and has wider distribution especially in Z-direction. Emission from the edge of fireball is well seen even after cascade.

Space-time distributions with vHLLE 7.7 GeV

π⁺⁻, 7.7 GeV 1PT Pion emission τ -Z after hydro phase

π⁺⁻, 11.5 GeV 1PT Pion emission τ-Z after hydro phase

Pion emission for 1PT lasts longer then XPT

XPT Pion emission τ -Z after hydro phase

XPT Pion emission τ -Z after hydro phase

X:Y Space-time distributions with vHLLE 7.7 GeV

Dynamics of expansion is very different for 1PT (slower) and XPT (faster).

But if we integrate by time we lost such information – integrated X:Y distributions are rather similar

Our meeting Aug.2020

XYZ Space-time distributions with vHLLE 7.7 GeV

π⁺⁻, 7.7 GeV

1PT Pion emission XYZ after hydro phase

XPT Pion emission XYZ after hydro phase

π^{+-} , 11.5 GeV

1PT Pion emission XYZ after hydro phase

XPT Pion emission XYZ after hydro phase

7.7 GeV: XYZ Integral 1PT 0.961 $\cdot 10^6$ for 50000 ev ,XPT ~ 0.874 $\cdot 10^6$ for 50000 ev – 10% 11.5 GeV: XYZ Integral 1PT 1.256 $\cdot 10^6$ for 40000 ev ,XPT ~ 1.253 $\cdot 10^6$ for 40000 ev – no diff.

Three-fluid Hydrodynamics-based Event Simulatons Extended by UrQMD final State interactions (THESEUS)

hydrodynamic phase

3FH Starts from baryon density nB = 0.15 fm-3

Energy density 0.14 GeV/fm3o

Three-fluid hydrodynamics (3FH): Yu. B. Ivanov, V. N. Russkikh and V. D. Toneev, Phys. Rev. C 73, 044904 (2006); Hadronic cascade

UrQMD

Total energy density ε < εfrz,=0.4 GeV/fm Pressure scaled by the product of normal nuclear density (n0 = 0.15 fm-3) and nucleon mass (mN) versus baryon density scaled by the normal nuclear density for three considered equations of state. Results are presented for three different temperatures T = 10, 100 and 200 MeV (from bottom upwards for corresponding curves).

<u>EoS :</u>

- Hadron Gas
- Crossover and 1PT EoS:
 - A. S. Khvorostukin, V. V. Skokov, V. D.
 Toneev and K. Redlich, Eur. Phys. J. C 48, 531 (2006).
 Based on the quasi-particle description of the QCD medium atfinite temperature and densitywe formulate the phenomenological model for the equation ofstate that exhibits crossover or the firstorder deconfinement phase transition

Time distributions with VHLEE and THESEUS

π^{+-} , 7.7 GeV vHLEE

0.3

0.25

0.2

0.15

0.1

0.05

π⁺⁻, 7.7 GeV

Pion emission time after hydrodynamic phase

t {abs(id)==211&&t<20} ×10 ×10 htemp 250 Entries 2777806 250 6.778 Mean BMS 2.077 200 200 150 150 100 100 50 8 10 12 14 16 18 20 t (fm/c)

Pion emission time after cascade VHLEE+UrQMD

TH3 Pion emission time after hydrodynamic phase

THESEUS Pion emission time after cascade

Our meeting Aug.2020

Additional slides

Is it a special feature of vHLLE or it is present in the other models ?

Radii π and K vs. mT with vHLLE+UrQMD (7.7GeV)

- AuAu, $\sqrt{s_{_{\rm NN}}} = 7.7 \, {\rm GeV}$
- 0-5% centrality
- All as for 11.5 AGeV (slide 11) and model does not predict significant differences.
- As well as for π kaon out and long radii greater for **1PT** than for **XPT**
- Approximate m_T scaling for pions and kaons observed only for "side" radii
- It is important to measure both kaons and pions

vHLEE+UrQMD model with both EoS Olga's selections |eta| < 1 & pT>0.5 GeV/c

 π^{+} , 7.7 GeV/s

 π^{+-} , 11.5 GeV/s

Pion emission X-coord. after cascade

Pion emission X-coord. after hydrodynamic phase

Our meeting Aug.2020

vHLEE+UrQMD model with both EoS Olga's selections |eta| < 1 & pT>0.5 GeV/c

 π^{+-} , 7.7 GeV/s

 π^{+-} , 11.5 GeV/s

Pion emission Z-coord. after cascade

Pion emission Z-coord. after hydrodynamic phase

Pion emission Z-coord. after cascade

Our meeting Aug.2020

vHLEE+UrQMD model with both EoS Olga's selections |eta| < 1 & pT>0.5 GeV/c

 π^{+-} , 7.7 GeV/s

 π^{+-} , 11.5 GeV/s

Pion emission Z-coord. after cascade

Pion emission Z-coord. after hydrodynamic phase

Pion emission Z-coord. after cascade

Our meeting Aug.2020

π⁺⁻, 7.7 GeV/s

1PT Pion emission t-Z after hydrodynamic phase

XPT Pion emission t-Z after hydrodynamic phase

π⁺⁻, 11.5 GeV/s

1PT Pion emission t-Z after hydrodynamic phase

XPT Pion emission t-Z after hydrodynamic phase

Our meeting Aug.2020

π^{+} , 7.7 GeV/s

π⁺⁻, 11.5 GeV/s

Our meeting Aug.2020

pT- spectra of π and K with vHLLE+UrQMD

STAR, PHYSICAL REVIEW C 96, 044904 (2017) π^+ , 11.5 GeV/s

π⁺, 7.7 GeV/s

K⁺, 7.7 **GeV**/s

K⁺, 11.5 GeV/s

vHLEE+UrQMD model with both EoS describe reasonably (<20%) pT-spectra of pions and kaons at pT<1 GeV/c

MPD Physics Seminar 21 Nov, 2019

3D Pion radii versus m_{T} with vHLLE+UrQMD

P. Batyuk, Iu. Karpenko, R. Lednicky, L. Malinina, K. Mikhaylov, O. Rogachevsky D. Wielanek Phys.Rev. C96 (2017) no.2, 024911

• Femtoscopic radii are sensitive to the type of the phase transition

- **Crossover EoS** describes better R(mT) dependencies, especially at low energies
- R_{out} (XPT) at high energies and R_{out} (1PT) at all energies are slightly overestimated
- $R_{out,long}$ (1PT) > $R_{out,long}$ (XPT) by value of ~1-2 fm.
- R_{out}/R_{side} (XPT) agrees with almost all STAR data points , while R_{out}/R_{side} (1PT) overestimates the data.

Radii π and K vs. mT with vHLLE+UrQMD (11.5GeV)

- Au+Au, $\sqrt{s_{_{\rm NN}}} = 11.5 \text{ GeV}$
- 0-5% centrality
- As well as for π , kaon out and long radii greater for **1PT** than for **XPT**
- Approximate m_T-scaling for pions and kaons observed only for "side" radii
- R_{out} almost flat for 1PT
- R_{long}(KK) is greater than R_{long}(ππ) kaons on average emitted later than pions
- Rout/Rside(KK) for kaons is less than for pions

Radii π and K vs. mT with vHLLE+UrQMD (7.7GeV)

- AuAu, $\sqrt{s_{_{\rm NN}}} = 7.7 \, {\rm GeV}$
- 0-5% centrality
- All as for 11.5 AGeV (slide 11) and model does not predict significant differences.
- As well as for π kaon out and long radii greater for **1PT** than for **XPT**
- Approximate m_T scaling for pions and kaons observed only for "side" radii
- It is important to measure both kaons and pions

Pion R(kT) with UrQMD (7.7GeV)

Analysis was performed using the MpdFemto package developed by our group

- Femtoscopic weigths were estimated using R. Lednicky codes incorporated in MpdFemto
- Centrality bin (20-30%) was estimated by:

Impact parameter: 6.6 —

8.1 fm (solid markers)

Reference multiplicity range (charged particles with pT > 0.1 GeV/c and η <0.5): 72 — 106 (open markers)

- Both centrality definitions give similar results (< 5% difference)
- Both agree with STAR data
 PHYSYCAL REVIEW C92,
 014904 (2015)

Ratio of $R_{out,side,long}$ (1PT)/ $R_{out,side,long}$ (XPT) vs. \sqrt{s}_{NN}

- Pion k_T divided into 4 bins
- R_{side} ratio practically coincide for both scenarios
- R_{out} and R_{long} ratios for 1PT EoS are greater than for XPT EoS and demonstrating a strong k_T -dependence at low energy
- The difference comes from a weaker transverse flow developed in the fluid phase with 1PT EoS as compared to XPT EoS and its longer lifetime in 1PT EoS

PT pt = 0.910758 Ro = 3.302278 +/- 0.083238 Rs = 3.115587 +/- 0.075613 RI = 1.949938 +/- 0.053026 lambda = 0.861800 +/- 0.029641 ---PT kt = 0.243885 Ro = 5.853203 +/- 0.012983 Rs = 4.526370 +/- 0.009281 Rl = 5.833690 +/- 0.012950 lambda = 0.658185 +/- 0.001811 ---PT kt = 0.330877 Ro = 5.598684 +/- 0.014158 Rs = 4.195386 +/- 0.010687 Rl = 4.805280 +/- 0.013206 lambda = 0.708856 +/- 0.002439 ---PT kt = 0.423651 Ro = 5.193342 +/- 0.018885 Rs = 3.922484 +/- 0.014245 RI = 4.044926 +/- 0.015979 lambda = 0.751327 +/- 0.003731 ---PT kt = 0.519114 Ro = 4.836977 +/- 0.026219 Rs = 3.690928 +/- 0.019877 Rl = 3.473926 +/- 0.020433 lambda = 0.780513 +/- 0.005787 ---PT kt = 0.616019 Ro = 4.531916 +/- 0.037128 Rs = 3.536752 +/- 0.028458 Rl = 3.044261 +/- 0.027003 lambda = 0.804450 +/- 0.009016 ---PT kt = 0.713779 Ro = 4.220105 +/- 0.052365 Rs = 3.437618 +/- 0.041513 Rl = 2.723916 +/- 0.036582 lambda = 0.825396 +/- 0.013981 ---PT kt = 0.812084 Ro = 3.997510 +/- 0.075017 Rs = 3.289712 +/- 0.059044 RI = 2.440464 +/- 0.048373 lambda = 0.844451 +/- 0.021316 ---PT kt = 0.910758 Ro = 3.657446 +/- 0.104587 Rs = 3.214776 +/- 0.087869 RI = 2.214615 +/- 0.067071 lambda = 0.839029 +/- 0.032464 ---PT kt = 0.243885 Ro = 5.411381 +/- 0.013912 Rs = 4.563718 +/- 0.010675 Rl = 5.295265 +/- 0.013668 lambda = 0.656190 +/- 0.002073 ---PT kt = 0.330877 Ro = 5.059964 +/- 0.014262 Rs = 4.203624 +/- 0.011842 RI = 4.299572 +/- 0.013220 lambda = 0.704119 +/- 0.002692---PT kt = 0.423651 Ro = 4.602196 +/- 0.017958 Rs = 3.910818 +/- 0.015146 RI = 3.577279 +/- 0.015007 lambda = 0.744026 +/- 0.003955 ---PT kt = 0.519114 Ro = 4.238570 +/- 0.023966 Rs = 3.675051 +/- 0.020513 RI = 3.061379 +/- 0.018277 lambda = 0.776345 +/- 0.005963 ---PT kt = 0.616019 Ro = 3.938548 +/- 0.032299 Rs = 3.486268 +/- 0.028082 RI = 2.671821 +/- 0.023823 lambda = 0.800573 +/- 0.008929 ---PT kt = 0.713779 Ro = 3.667737 +/- 0.044284 Rs = 3.348105 +/- 0.039276 RI = 2.334432 +/- 0.029975 lambda = 0.810706 +/- 0.013239 ---PT kt = 0.812084 Ro = 3.425650 +/- 0.060489 Rs = 3.233699 +/- 0.055566 RI = 2.146808 +/- 0.040374 lambda = 0.835272 +/- 0.020103 ---PT kt = 0.910758 Ro = 3.302278 +/- 0.083238 Rs = 3.115587 +/- 0.075613 RI = 1.949938 +/- 0.053026 lambda = 0.861800 +/- 0.029641

-0.3–0.3

1PT pt = 0.910758 Ro = 3.360135 +/- 0.084346 Rs = 3.162874 +/- 0.076645 RI = 1.987813 +/- 0.053820 lambda = 0.870050 +/- 0.029926---PT kt = 0.243885 Ro = 5.850547 +/- 0.012821 Rs = 4.524329 +/- 0.009246 Rl = 5.830706 +/- 0.012766 lambda = 0.658011 +/- 0.001773---PT kt = 0.330877 Ro = 1.000000 +/- 0.000000 Rs = 1.000000 +/- 0.000000 RI = 1.000000 +/- 0.000000 lambda = 1.200000 +/- 0.000000 ---PT kt = 0.423651 Ro = 5.192562 +/- 0.018849 Rs = 3.921940 +/- 0.014221 RI = 4.044249 +/- 0.015947 lambda = 0.751256 +/- 0.003729 ---PT kt = 0.519114 Ro = 4.837971 +/- 0.026163 Rs = 3.691619 +/- 0.019842 RI = 3.474721 +/- 0.020388 lambda = 0.780612 +/- 0.005785 ---PT kt = 0.616019 Ro = 4.535630 +/- 0.037050 Rs = 3.539349 +/- 0.028411 Rl = 3.047022 +/- 0.026943 lambda = 0.804851 +/- 0.009014---PT kt = 0.713779 Ro = 4.228637 +/- 0.052281 Rs = 3.443672 +/- 0.041474 Rl = 2.730012 +/- 0.036524 lambda = 0.826396 +/- 0.013986---PT kt = 0.812084 Ro = 4.016945 +/- 0.075048 Rs = 3.303330 +/- 0.059126 RI = 2.453023 +/- 0.048417 lambda = 0.846782 +/- 0.021353 ---PT kt = 0.910758 Ro = 3.723361 +/- 0.106028 Rs = 3.264411 +/- 0.089212 RI = 2.257075 +/- 0.068092 lambda = 0.847838 +/- 0.032777 ---PT kt = 0.243885 Ro = 5.408008 +/- 0.013875 Rs = 4.560913 +/- 0.010642 RI = 5.291495 +/- 0.013622 lambda = 0.655946 +/- 0.002071 ---PT kt = 0.330877 Ro = 5.048172 +/- 0.014196 Rs = 4.194477 +/- 0.011789 Rl = 4.288460 +/- 0.013156 lambda = 0.703066 +/- 0.002686---PT kt = 0.423651 Ro = 4.602145 +/- 0.017966 Rs = 3.910777 +/- 0.015079 Rl = 3.577236 +/- 0.015167 lambda = 0.744021 +/- 0.003954 ---PT kt = 0.519114 Ro = 4.238437 +/- 0.023832 Rs = 3.674946 +/- 0.020457 Rl = 3.061273 +/- 0.018606 lambda = 0.776330 +/- 0.005960 ---PT kt = 0.616019 Ro = 3.939678 +/- 0.032177 Rs = 3.487171 +/- 0.027996 Rl = 2.672666 +/- 0.023699 lambda = 0.800714 +/- 0.008924 ---PT kt = 0.713779 Ro = 3.676295 +/- 0.044161 Rs = 3.354970 +/- 0.039200 Rl = 2.340260 +/- 0.029899 lambda = 0.811838 +/- 0.013243 ---PT kt = 0.812084 Ro = 3.451959 +/- 0.060611 Rs = 3.255637 +/- 0.055731 Rl = 2.164562 +/- 0.040470 lambda = 0.839209 +/- 0.020172---PT kt = 0.910758 Ro = 3.360135 +/- 0.084346 Rs = 3.162874 +/- 0.076645 RI = 1.987813 +/- 0.053820 lambda = 0.870050 +/- 0.029926