HBT (Kaons Vs Pions) 7.7 GeV and 11.5 GeV vHLLE+UrQMD 1PT vHLLE+UrQMD XPT Eugenia Khyzhniak (09.07.2020) Grigory Nigmatkulov

Pavel Batyuk

Analysis

• Datasets location (pure generator tracks)

Hydro: /zfs/store7.hydra.local/pbatyuk/mcDst/vHLLE_UrQMD/AuAu/

Without Coulomb!

• Analysis procedure: • Correlation function construction: $C(q) = \frac{A(q)}{B(q)} \begin{cases} A(q) - q \text{ distribution with} \\ Weight = lednicky codes \\ B(q) - q \text{ distribution with} \\ Weight = 1 \end{cases}$ • Fit: $C(q) = 1 + \lambda G(q)$ $G(q) = e^{-q_{out}^2 R_{out}^2 - q_{side}^2 R_{side}^2 - q_{long}^2 R_{long}^2}$

Without Coulomb!

Analysis

• vHLLE+UrQMD (~1M events for each centrality bin)

- 4 centrality bins (0 3.3 fm, 3.4 4.7 fm, 4.7 6.6 fm 6.6 10.4 fm)
- 9 k_T bins (0.15 1.05 GeV/c with step = 100 MeV)

Event cuts	Track cuts	Pair cuts
minBais events	0.15 < рт (GeV/c) < 2.8	pair cuts was not applied
	ŋ < 1	

Example of Cfs (vHLLE 7.7 GeV)

XPT

- Fits of CFs look good
- Not enough statistics for fit stability -> All hist. was rebinned by 2

• Now:
$$|q_{0,s,l}| < 0.5$$
, Nbins
= 50

Example of Cfs (vHLLE 11.5 GeV)

• Fits of CFs look good

 Not enough statistics for fit stability -> All hist. was rebinned by 2

• Now: $|q_{0,s,1}| < 0.5$, Nbins = 50

- Radii decreases with increasing $k_{\ensuremath{\mathsf{T}}}$
- Radiii increases with decreasing impact parameter
- Clear difference between R_1 and $R_{_0}$ obtained from 1PT and XPT and small difference for $R_{_{\rm S}}$

7

Summary

- All histogram was rebinned by 2 due to the poor statistics
- Rlong and Rout have more strong dependence on PT than Rside
- The difference increases with collision energy