HBT (Kaons) 7.7 GeV and 11.5 GeV (Hydro 1PT, Hydro XPT, UrQMD)

Eugenia Khyzhniak (16.04.2020)

Analysis

- Datasets location
 - Hydro: /zfs/store7.hydra.local/pbatyuk/mcDst/vHLLE_UrQMD/AuAu/
 - UrQMD: /zfs/store7.hydra.local/gnigmat/mcDst/urqmd/

- Analysis procedure:
 - Correlation function construction: $C(q) = \frac{A(q)}{B(q)} \begin{cases} A(q) q \text{ distribution with} \\ Weight = lednicky codes \\ B(q) q \text{ distribution with} \end{cases}$
 - Fit: $C(q) = 1 + \lambda G(q)$ Weight = 1 $G(q) = e^{-q_{out}^2 R_{out}^2 - q_{side}^2 R_{side}^2 - q_{long}^2 R_{long}^2}$

Example of Cfs (Hydro 7.7 GeV)

Example of Cfs (Hydro 11.5 GeV)

1PT

- Fits of CFs look good
- Not enough statistics for fit stability

- Radii decreases with increasing $k_{\ensuremath{\mathsf{T}}}$
- Radiii increases with decreasing impact parameter
- Clear difference between $R_{\rm l}$ obtained from 1PT and XPT and small difference for $R_{\rm s}$ and $R_{\rm o}$

Cfs (UrQMD 7.7 GeV)

Cfs (UrQMD 11.5 GeV)

• Need more statistics

Summary

- Radii decreases with increasing $k_{\rm T}\, for \ both \ UrQMD$ and Hydro
- Radiii increases with decreasing impact parameter (increasing particle multiplicity) for both UrQMD and Hydro
- Clear difference between $\rm R_{l}$ obtained from 1PT and XPT and small difference for $\rm R_{s}$ and $\rm R_{o}$

Need more statistics for both UrQMD and Hydro

Thank you for your attention!