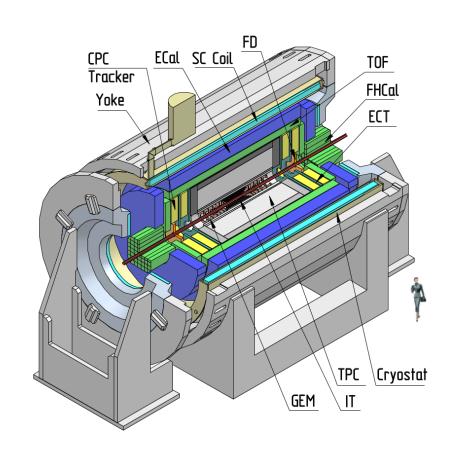


Vth MPD Collaboration meeting 23-24 April 2020, JINR, Dubna

Femtoscopy correlations with MPD at NICA

on behalf of PWG3 (Correlations and Fluctuations)
Supported by the RFBR grant 18-02-40044


P. Batyuk¹, M. Cheremnova², O. Kodolova², E. Khyzhniak⁴, L. Malinina^{1,2}, K.Mikhaylov^{1,3}, G.Nigmatkulov⁴, G. Romanenko²

- ¹ Joint Institute for Nuclear Research, Dubna, Russia
- ² Skobeltsyn Research Institute of Nuclear Physics, Moscow State University, Moscow, Russia
- ³ NRC Kurchatov Institute ITEP, Rusian Federation, Moscow, Russia
- ⁴ National Research Nuclear University, Moscow Engineering Physics Institute, Moscow, Russia

Outline

- Activities
- Femtoscopy & Motivation
- Hybrid vHLLE+UrQMD model
- Comparison with STAR BES
- First tests with reconstructed data
- Plans for 2020
- Conclusion

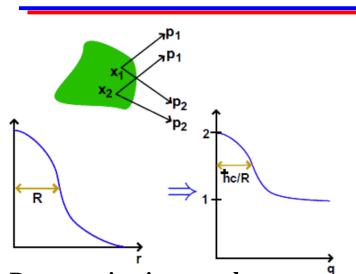
Activities within RFBR grant 18-02-40044

- Three students and 1 PhD student in Femto group
- <u>PWG3 Meetings</u>: 8 events(2019) and 4events(2020) → https://indico.jinr.ru/category/346/
- MPD Physics Seminars:
- L.Malinina. «Correlation femtoscopy at NICA» 21-11-2019
- G.Nigmatkulov. «Looking at Data Stored in MpdDst» 21-11-2019
- K. Mikhaylov «The first tests of MC data obtained using vHLLE model» 19-09-2019
- Conferences:
- P. Batyuk. «Femtoscopy with identified particles for NICA/MPD». XIV WPCF, Dubna, 2019
- K. Mikhaylov. «Correlation femtoscopy at NICA energies». XXIV HEPQFT, Sochi, 2019
- P. Batyuk. "Correlation femtoscopy and factorial moments at the NICA energies". NICA-days 2019, Warsaw, 2019
- Publications:
- K.Mikhaylov, P.Batyuk, O.Kodolova, L.Malinina, G.Nigmatkulov and G.Romanenko,
- «Correlation femtoscopy at NICA energies», EPJ Web Conf. Volume 222, 2019, 02004
- P. N. Batyuk, L. V. Malinina, K. R. Mikhaylov, and G. A. Nigmatkulov,
- «Femtoscopy with Identified Charged Particles for the NICA Energy Range», Physics of Particles and Nuclei, 2020, Vol. 51, No. 3, pp. 252–257

Activities within RFBR grant 18-02-40044

Aim of the project:

Study of collective effects and dynamics of quarkhadron phase transitions via femtoscopic correlations of hadrons and factorial moments of particle multiplicity at NICA energies


Goals:

- Development of the data analysis methods and software that will be integrated in the Multi-Purpose Detector (MPD) software environment
- Analysis of the simulated with different event generators (in particular, UrQMD and vHLLE) Au+Au collisions at NICA energies
- ➤ Study the dependence of femtoscopic radii and scaled factorial moments of particle multiplicity on the initial conditions and properties of nuclear matter equation of state

2019:

- Simulation of Au+Au collisions with UrQMD and vHLLE+UrQMD models for different collision energies (done)
- Software development for: (done)
 - femtoscopic analyses
 - factorial moments of multiplicity distributions
 - other activities
- Femtoscopic analysis (at one collision energy) and extraction of source functions for pions and kaons for models with different Equation of State (EoS): first-order phase transition (1PT), crossover (XPT), no phase transition. (done)
- Investigation of the detector effects (track-merging and track-splitting in TPC) on femtoscopic measurements and factorial moments (on going)

Femtoscopy

Parametrizations used:

1D CF:
$$C(q_{inv}) = 1 + \lambda e^{-R^2 q_{inv}^2}$$

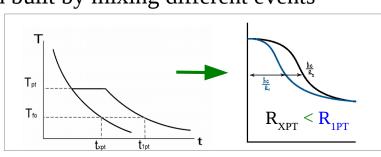
R – Gaussian radius in PRF,

 λ – correlation strength parameter

Correlation femtoscopy:

Measurement of space-time characteristics $\, {\bf R}, \, {\bf c} {\bf \tau} \,$ of particle production using particle correlations due to the effects of quantum statistics (QS) and final state interactions (FSI)

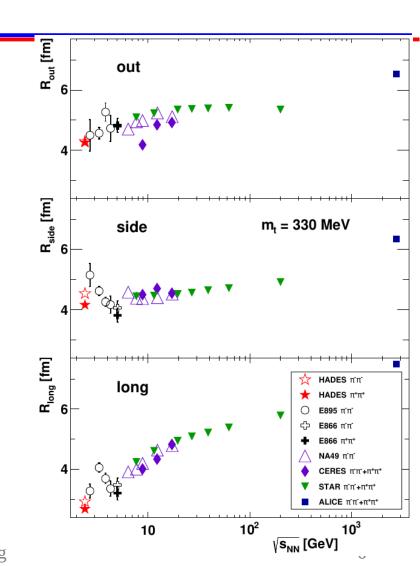
Two-particle correlation function:


theory:
$$C(q) = \frac{N_2(p_1, p_2)}{N_1(p_1) \cdot N_2(p_1)}, C(\infty) = 1$$

experiment: $C(q) = \frac{S(q)}{B(q)}, q = p_1 - p_2$

S(q) – distribution of pair momentum difference from same event B(q) – reference distribution built by mixing different events

long || beam; out || transverse pair velocity v_T ; side normal to out, long



Motivation

Femtoscopy allows one:

- To obtain spatial and temporal information on particle-emitting source at kinetic freeze-out
- To study collision dynamics depending on EoS
- RHIC Beam Energy Scan program (BES-I): $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39 \text{ GeV}$
 - The search for the onset of a first-order phase transition in Au + Au collisions
 - Measured pion and kaon femtoscopic parameters: m_T -dependence of radii, flow-induced x p correlations
- NICA energy range: $\sqrt{s_{NN}} = 4 11 \text{ GeV}$
 - first collider measurements below 7.7 GeV

including K and heavier

Femtoscopy with vHLLE+UrQMD

Iu. Karpenko, P. Huovinen, H.Petersen, M. Bleicher,

Pre-thermal phase

UrQMD

Parameters τ_0 , R_{\perp} , $R_{\rm n}$ and η/s adjusted using basic observables in the RHIC BES-I region.

$\sqrt{s_{ m NN}}$ [GeV]	$\tau_0 \ [{ m fm/c}]$	R_{\perp} [fm]	R_{η} [fm]	η/s
7.7	3.2	1.4	0.5	0.2
8.8 (SPS)	2.83	1.4	0.5	0.2
11.5	2.1	1.4	0.5	0.2
17.3 (SPS)	1.42	1.4	0.5	0.15
19.6	1.22	1.4	0.5	0.15
27	1.0	1.2	0.5	0.12
39	0.9	1.0	0.7	0.08
62.4	0.7	1.0	0.7	0.08
200	0.4	1.0	1.0	0.08

Model tuned by matching with existing experimental data from SPS and BES-I RHIC

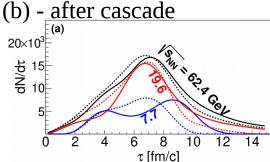
Hydrodynamic phase

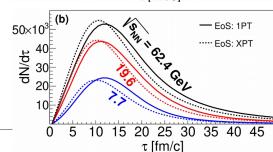
vHLLE

(3+1)-D viscous hydrodynamics

EoS to be used in the model

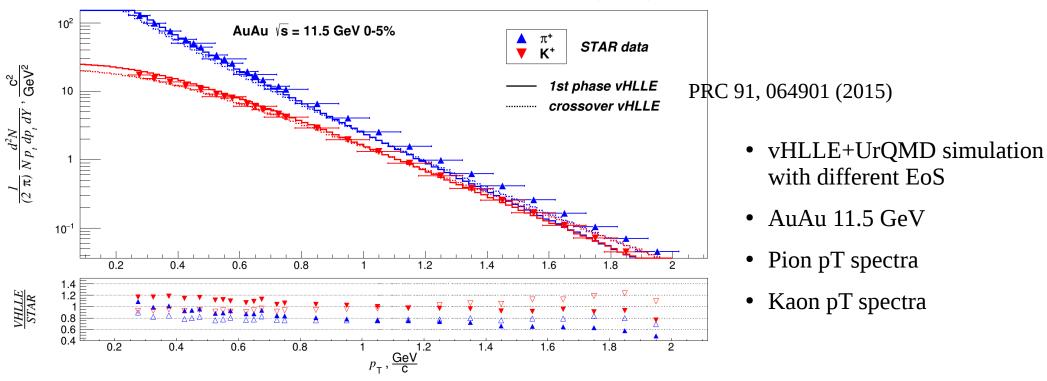
- Chiral EoS crossover J. Steinheimer et al., J. Phys. G 38, 035001 (2011)
- Hadron Gas + Bag Model 1st-order phase transition P. F. Kolb et al., Phys.Rev. C 62, 054909 (2000)


Hydrodynamic phase lasts longer with 1PT, especially at lower energies but cascade smears this difference.

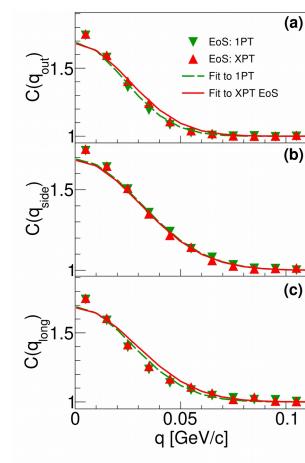

Hadronic cascade

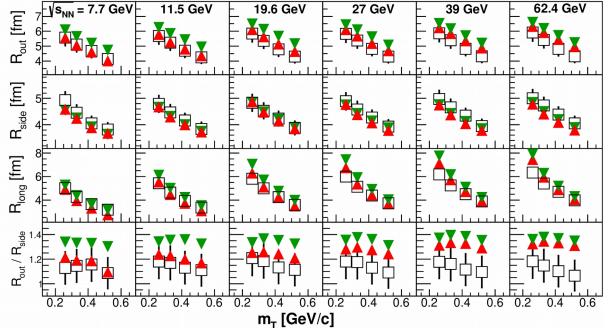
UrQMD

Pion emission time


(a) - after hydrodynamic transition phase

p_{T} - spectra of π and K with vHLLE+UrQMD

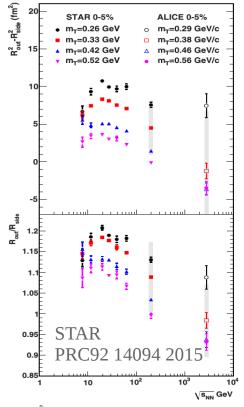

STAR data: PHYSICAL REVIEW C 96, 044904 (2017)

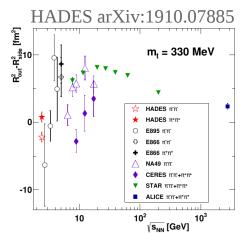

• vHLEE+UrQMD model with both EoS describe reasonably soft part of p_T-spectra of pions and kaons

3D Pion radii versus m_T with vHLLE+UrQMD

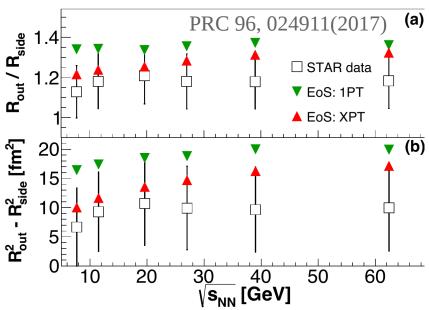
Model CF

Comparison of extracted radii with the STAR data[PRC 96, 024911(2017)]


- Femtoscopic radii are sensitive to the type of the phase transition
- Crossover EoS does better job at lowest collision energies.
- R_{out} (XPT) at high energies and R_{out} (1PT) at all energies are slightly overestimated

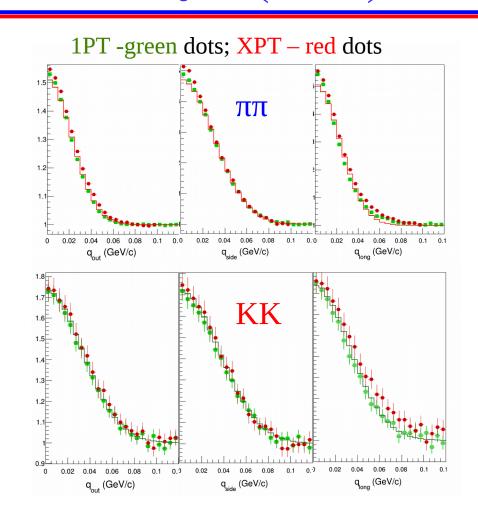

V MPD Collaboration meeting

• $R_{\text{out,long}}$ (1PT) > $R_{\text{out,long}}$ (XPT) by value of ~1-2 fm.


R_{out}/R_{side} with vHLLE + UrQMD model

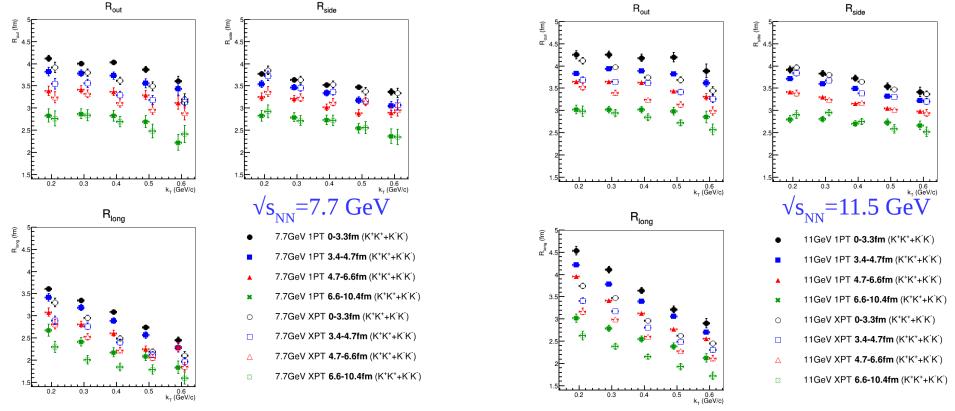
Exp. data: R_{out} / R_{side} and $R_{out}^2 - R_{side}^2$ as a function of $\sqrt{s_{NN}}$ at a fixed m_T demonstrate a wide maximum near $\sqrt{s_{NN}} \approx 20 \text{ GeV}$

Present vHLLE+UrQMD calculations:

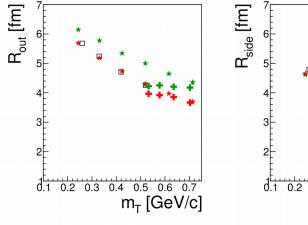


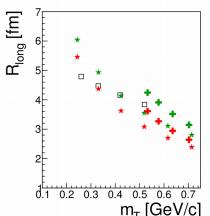
- R_{out}/R_{side} (XPT) agrees with almost all STAR data points within rather large systematic errors, while R_{out}/R_{side} (1PT) overestimates the data.
- XPT a monotonic increase in both quantities

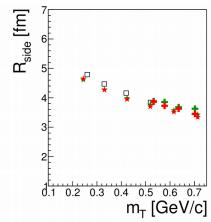
Kaon correlation functions with vHLLE+UrQMD (NEW!)

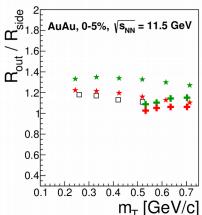

Analysis:

- MDP femto package (see Grigory talk)
- Au+Au, $\sqrt{s_{NN}} = 11.5 \text{ GeV}$
- $N_{\rm events} \approx 4.10^5$ central events (vHLLE)
- Standard 3D Gaussian fit used
- Our, side, long projections
- Projections of 3D kaon correlation functions on out-side-long directions are more Gaussian
- XPT CF projections on long direction are visibly wider than 1PT especially for kaons → measurable with MPD

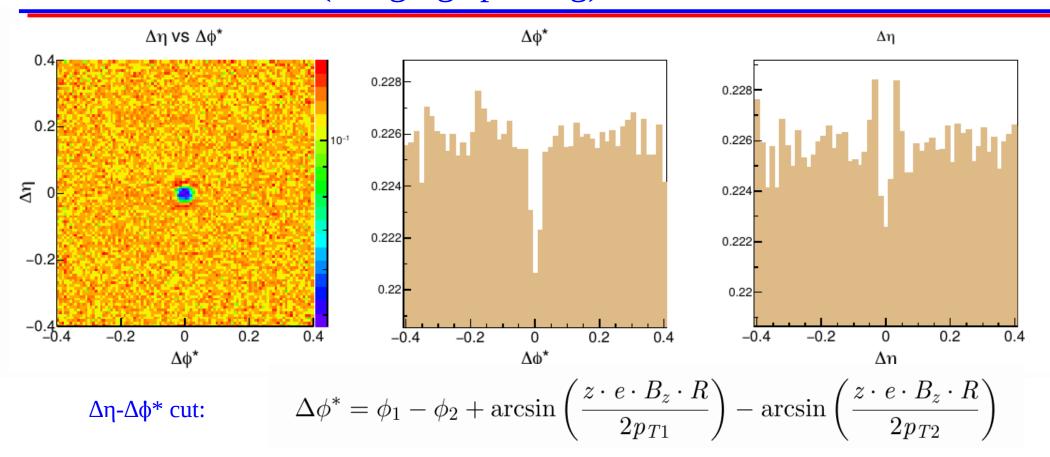

R vs. k_T with vHLLE $\sqrt{s_{NN}}$ =7.7 and 11.5 GeV (preliminary)

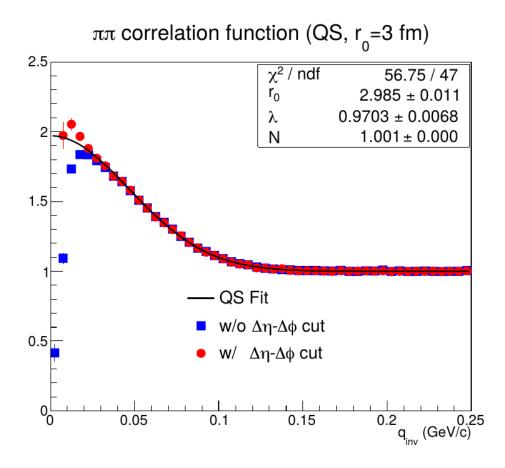

- Radii for 0-5, 5-10, 10-20 and 20-50% centrality and 1PT, XPT EoS are shown
- R decreases with kT and centrality
- Significant difference between XPT and 1PT in R out and long $(R_{XPT} \le R_{1PT})$




Radii π and K vs. mT with vHLLE+UrQMD

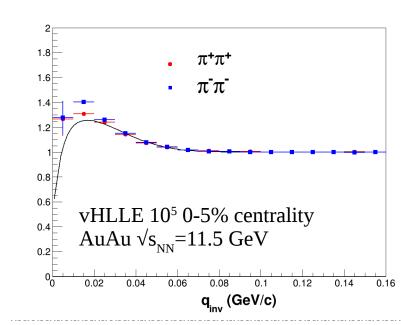
1PT -green dots; XPT – red dots




- Au+Au (0-5%), $\sqrt{s_{NN}} = 11.5 \text{ GeV}$
- ullet As well as for π , kaon out and long radii greater for 1PT than for XPT
- Approximate m_T-scaling for pions and kaons observed only for "side" radii
- R_{out} almost flat for 1PT
- $R_{long}(KK)$ is greater than $R_{long}(\pi\pi)$ kaons on average emitted later than pions
- Rout/Rside(KK) for kaons is less than for pions
- Approximately the same result is for Au+Au $\sqrt{s_{NN}}$ = 7.7 GeV
- It is important to measure both kaons and pions

Two track effects (merging/splitting)

R is a given cylindrical radius, $\phi_{1,2}$ are azimuthal angles of track at reconstructed vertex


Reconstructed correlation function

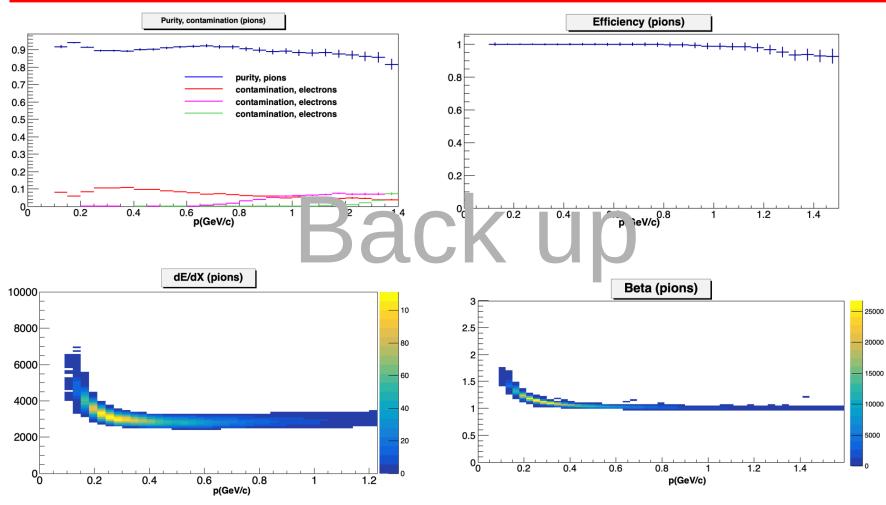
- UrQMD AuAu 11 GeV reconstructed evnts
- With cut $\Delta \eta < 0.04$ and $\Delta \phi * < 0.02$
- Without cut on $\Delta \eta$ and $\Delta \phi^*$
- Pion femtoscopic CF can be correctly reconstructed if two-tracks cuts are applied
- Good knowledge of tracking procedure is necessary

First physics (very preliminary)

- If we will have something like:
- Bi+Bi 10⁶ minimum bias events (with highest possible energy)
- pi-pi one dimension correlation function 10⁵ (0-10% centrality)
- mT-dependence
- Have to do MC simulations in order to have realistic estimation
- Energy to compare with other experiment (STAR, AGS, ...)?

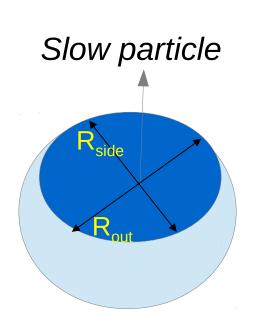
2020 plans

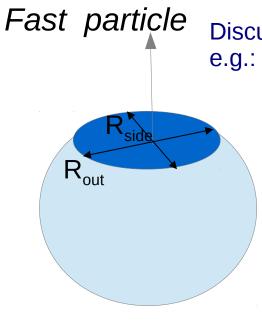
- Simulation of ion-ion collisions with different models and different EoS for $\sqrt{s_{_{NN}}}$ =4-11GeV energies to be continued
 - 3d CF analysis of $\pi\pi$ and KK
 - m_T dependence within MPD detector range
 - Factorial moment study [see Olga's talk]
- New MpdFemto package [see Grigory's talk]
 - Test within MpdRoot
 - Two Track Cut tests (merging, splitting)
 - Finite Momentum Resolution tests
- New miniDST format [see Grigory's talk]
 - Compact reconstructed and generated information (ten times less than DST)
 - Reaction, track quality, TOF, Ecal and FHCal (first stage of MPD detector)
 - MiniDST created on-the-fly
- Software for factorial moment study will be developed [see Olga's talk]


Conclusions

- Study of collective effects and dynamics of quark-hadron phase transitions via femtoscopic correlations of hadrons and factorial moments of particle multiplicity at NICA energies was performed
- First results look promising and this study is planned to be continued.
- Development of the data analysis methods and software integrated in the Multi-Purpose Detector (MPD) software environment was performed and will be continued
- Results were presented at WPCF, QFTHEP and NICA Days conferences
- Proceeding were published

Thank you for attention!


Backup


MPD response for femtoscopy(standard MPD PID)

Femtoscopy with expanding source $\rightarrow m_{T}$ -dependence

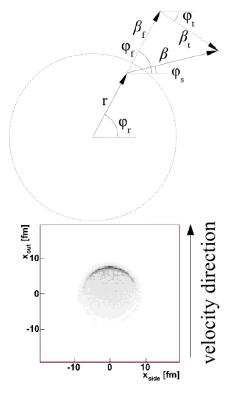
- \mathbf{x} - \mathbf{p} correlations \rightarrow interference dominated by particles from nearby emitters.
- Interference probes only parts of the source at close momenta **homogeneity regions.**
- Longitudinal and transverse expansion of the source -> significant reduction of the radii with increasing pair velocity, consequently with $k_{_{\rm T}}$ (or $m_{_{\rm T}}$ =(m²+ $k_{_{\rm T}}$ ²)^{1/2})

Discussed in e.g.:

Kolehmainen, Gyulassy'86 Makhlin-Sinyukov'87 Pratt, Csörgö, Zimanyi'90

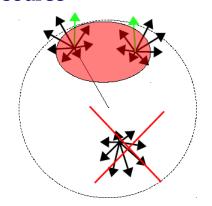
$$R_{\text{side}} \sim R/(1+m_T \beta_T^2/T)^{1/2}$$

 $\beta_{\rm T}$ collective transverse flow assuming a longitudinal boost invariant expansion

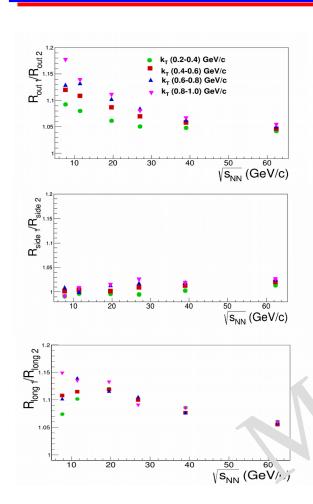

$$R_{long} = \tau (T/m_T)^{1/2}$$

$$R_{out}^2 \sim R_{side}^2 + 1/2 (T/m_T)^2 \beta_T^2 \tau^2$$


Femtoscopy with expanding source


Interference probes only parts of the source at close momenta — **homogeneity regions.**

[Yu.M. Sinyukov, Nucl. Phys. A 566, 589 (1994);] Figures and consideration from A. Kisiel Phys.Rev. C81 (2010) 064906


- A particle emitted from a medium will have a collective velocity β_f and a thermal (random) one β_f
- As observed p_T grows, the region from where pairs with small relative momentum can be emitted gets smaller and shifted to the outside of the source

24 Apr 2020

Ratio of $R_{out,side,long}(1PT)/R_{out,side,long}(XPT)$ vs. $\sqrt{s_{NN}}$

- Pion k_T divided into 4 bins
- R_{side} ratio practically coincide for both scenarios
- R_{out} and R ng ratios for 1PT EoS are greater than for XPT EoS and denonstrating a strong k_T -dependence at low energy
- The difference comes from a weaker transverse flow developed in the fluid phase with 1PT EoS as compared to XPT EoS and its longer lifetime in 1PT EoS