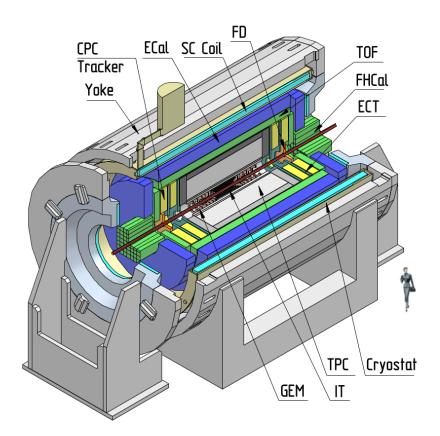


Vth MPD Collaboration meeting 23-24 April 2020, JINR, Dubna

Correlation femtoscopy and factorial moments

on behalf of PWG3 (Correlations and Fluctuations) Supported by the RFBR grant 18-02-40044

P. Batyuk¹, *M.* Cheremnova², *O.* Kodolova², *E.* Khyzhniak⁴, *L.* Malinina^{1,2}, K.Mikhaylov^{1,3}, G.Nigmatkulov⁴, G. Romanenko²



¹ Joint Institute for Nuclear Research, Dubna, Russia

- ² Skobeltsyn Research Institute of Nuclear Physics, Moscow State University, Moscow, Russia
- ³ NRC Kurchatov Institute ITEP, Rusian Federation, Moscow, Russia
- ⁴ National Research Nuclear University, Moscow Engineering Physics Institute, Moscow, Russia

Outline

- Activities
- Femtoscopy & Motivation
- Hybrid vHLLE+UrQMD model
- Comparison with STAR BES
- First tests with reconstructed data
- Factorial Moments
- Other activities
- Plans for 2020
- Conclusion

Activities within RFBR grant 18-02-40044

Aim of the project:

Study of collective effects and dynamics of quarkhadron phase transitions via femtoscopic correlations of hadrons and factorial moments of particle multiplicity at NICA energies

Goals:

Development of the data analysis methods and software that will be integrated in the Multi-Purpose Detector (MPD) software environment

Analysis of the simulated with different event generators (in particular, UrQMD and vHLLE) Au+Au collisions at NICA energies

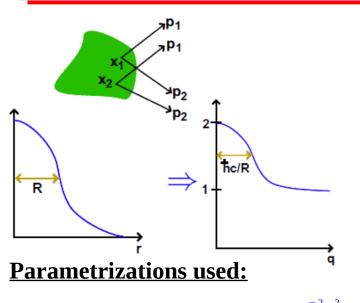
Study the dependence of femtoscopic radii and scaled factorial moments of particle multiplicity on the initial conditions and properties of nuclear matter equation of state

2019:

- Simulation of Au+Au collisions with UrQMD and vHLLE+UrQMD models for different collision energies (done)
- Software development for: (done)
 - femtoscopic analyses
 - factorial moments of multiplicity distributions
 - other activities
- Femtoscopic analysis (at one collision energy) and extraction of source functions for pions and kaons for models with different Equation of State (EoS): firstorder phase transition (1PT), crossover (XPT), no phase transition. (done)
- Investigation of the detector effects (track-merging and track-splitting in TPC) on femtoscopic measurements and factorial moments (on going)

<u>PWG3 Meetings</u>: 8 events(2019) and 4events(2020) → https://indico.jinr.ru/category/346/

<u>MPD Physics Seminars</u>: L.Malinina. «Correlation femtoscopy at NICA» 21-11-2019 G.Nigmatkulov. «Looking at Data Stored in MpdDst» 21-11-2019 K. Mikhaylov «The first tests of MC data obtained using vHLLE model» 19-09-2019


<u>Conferences</u>:

P. Batyuk. «Femtoscopy with identified particles for NICA/MPD». XIV WPCF, Dubna, 2019
K. Mikhaylov. «Correlation femtoscopy at NICA energies». XXIV HEPQFT, Sochi, 2019
P. Batyuk. "Correlation femtoscopy and factorial moments at theNICA energies". NICA-days 2019, Warsaw, 2019

Publication:

K.Mikhaylov, P.Batyuk, O.Kodolova, L.Malinina, G.Nigmatkulov and G.Romanenko, «Correlation femtoscopy at NICA energies», EPJ Web Conf. Volume 222, 2019, 02004

Femtoscopy

1D CF: $C(q_{inv}) = 1 + \lambda e^{-R^2 q_{inv}^2}$ *R* – Gaussian radius in PRF, λ – correlation strength parameter

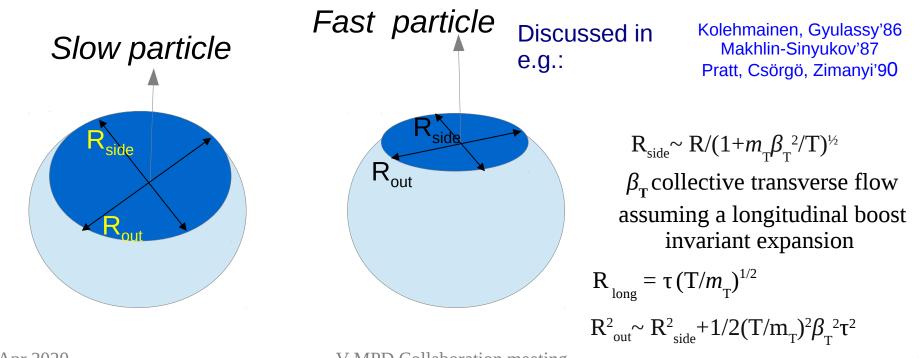
Correlation femtoscopy :

Measurement of space-time characteristics \mathbf{R} , $\mathbf{c\tau}$ of particle production using particle correlations due to the effects of quantum statistics (QS) and final state interactions (FSI)

Two-particle correlation function:

theory:

$$C(q) = \frac{N_{2}(p_{1}, p_{2})}{N_{1}(p_{1}) \cdot N_{2}(p_{1})}, C(\infty) = 1$$
$$C(q) = \frac{S(q)}{B(q)}, q = p_{1} - p_{2}$$


experiment:

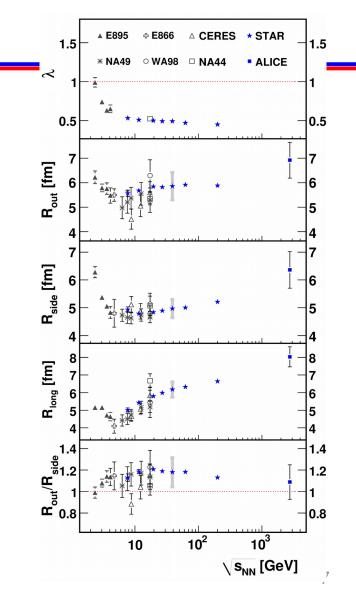
S(q) – distribution of pair momentum difference from same event B(q) – reference distribution built by mixing different events

3D CF: $C(q_{out}, q_{side}, q_{long}) = 1 + \lambda e^{-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2}$ *R* and *q* are in Longitudinally Co-Moving Frame (LCMS) long || beam; out || transverse pair velocity v_{T} ; side normal to out, long 23 Apr 2020 V MPD Collaboration meeting

Femtoscopy with expanding source $\rightarrow m_{T}$ -dependence

x-p correlations → interference dominated by particles from nearby emitters.
 Interference probes only parts of the source at close momenta – homogeneity regions.
 Longitudinal and transverse expansion of the source -> significant reduction of the radii with increasing pair velocity, consequently with k_T (or m_T=(m²+k_T²)^{1/2})

V MPD Collaboration meeting


Motivation

Femtoscopy allows one:

- To obtain spatial and temporal information on particle-emitting source at kinetic freeze-out
 To study collision dynamics depending on EoS
- RHIC Beam Energy Scan program (BES-I): $\sqrt{s_{_{NN}}} = 7.7, 11.5, 19.6, 27, 39 \text{ GeV}$
 - $S_{NN} = 7.7, 11.3, 19.0, 27, 39 GeV$
 - The search for the onset of a first-order phase transition in Au + Au collisions
 - Measured pion and kaon femtoscopic parameters:
 m_T -dependence of radii,

flow-induced x - p correlations

- NICA energy range: $\sqrt{s_{_{NN}}} = 4 11 \text{ GeV}$
 - first collider measurements below 7 GeV

Motivation

<u>Femtoscopy allows one:</u>

- To obtain spatial and temporal information on particle-emitting source at kinetic freeze-out To study collision dynamics depending on EoS
- RHIC Beam Energy Scan program (BES-I): √s_{NN} = 7.7, 11.5, 19.6, 27, 39 GeV
 - The search for the onset of a first-order phase transition in Au + Au collisions
 - Measured pion and kaon femtoscopic parameters: m_{τ} -dependence of radii,

flow-induced x - p correlations

• NICA energy range: $\sqrt{s_{_{NN}}} = 4 - 11 \text{ GeV}$

first collider measurements below 7 GeV

V MPD Collaboration meeting

Femtoscopy with vHLLE+UrQMD

Iu. Karpenko, P. Huovinen, H.Petersen, M. Bleicher, Phys.Rev. C 91, 064901 (2015)

Pre-thermal phase

UrQMD

Parameters τ_0 , R_{\perp} , R_n and η/s adjusted using basic observables in the RHIC BES-I region.

$\sqrt{s_{ m NN}}$ [GeV]	$ au_0 ~[{ m fm}/{ m c}]$	R_{\perp} [fm]	R_{η} [fm]	η/s
7.7	3.2	1.4	0.5	0.2
8.8 (SPS)	2.83	1.4	0.5	0.2
11.5	2.1	1.4	0.5	0.2
17.3 (SPS)	1.42	1.4	0.5	0.15
19.6	1.22	1.4	0.5	0.15
27	1.0	1.2	0.5	0.12
39	0.9	1.0	0.7	0.08
62.4	0.7	1.0	0.7	0.08
200	0.4	1.0	1.0	0.08

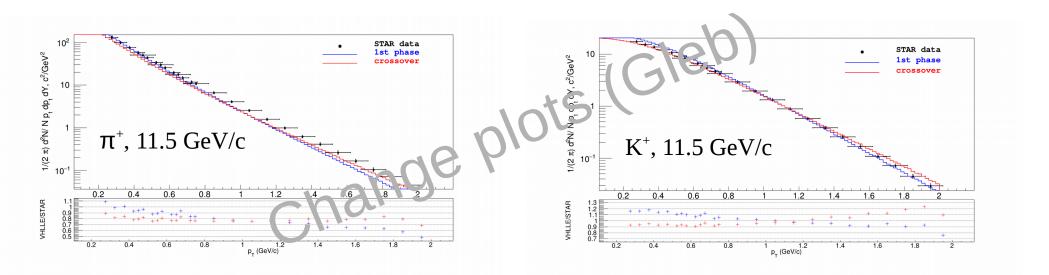
Model tuned by matching with existing experimental data from SPS and BES-I RHIC

Hydrodynamic phase

vHLLE (3+1)-D viscous hydrodynamics

EoS to be used in the model

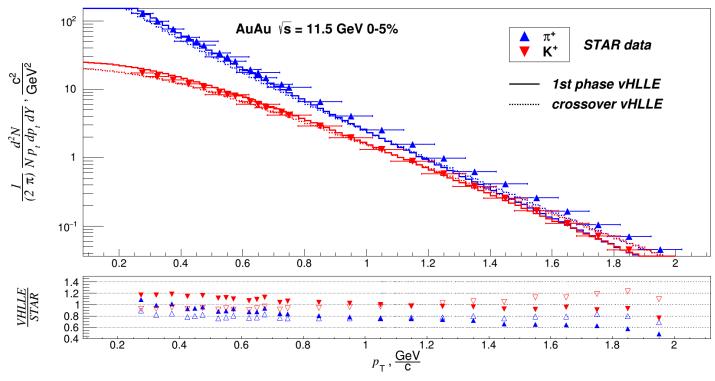
- transition phase Chiral EoS — crossover J. Steinheimer et al., J. Phys. G 38, 035001 (2011)
- Hadron Gas + Bag Model 1st-order phase transition P. F. Kolb et al., Phys.Rev. C 62, 054909 (2000)


Hydrodynamic phase lasts longer with 1PT, especially at lower energies but cascade smears this difference.

UrQMD **Pion emission time** (a) - after hydrodynamic (b) - after cascade 20×10 Ъ Ир Ир 10 8 10 12 6 τ [fm/c] 50×10³ (b) - EoS: 1PT ····· EoS: XPT 40 10/Np 10 15 20 25 30 35 40 45 5

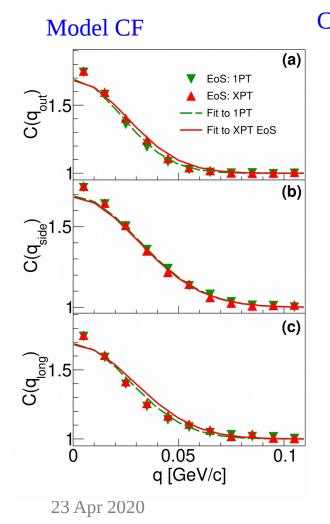
τ [fm/c]

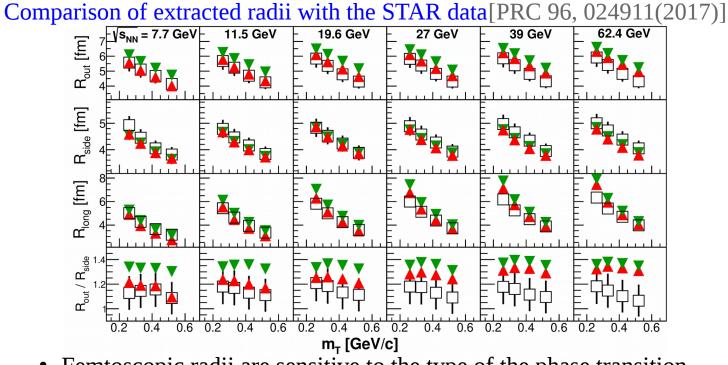
Hadronic cascade


p_{T} - spectra of π and K with vHLLE+UrQMD

- STAR data: PHYSICAL REVIEW C 96, 044904 (2017)
- EoS: 1st order phase transition and crossover phase transition
- vHLEE+UrQMD model with both EoS describe reasonably soft part of p_{T} -spectra of pions and kaons

$p_{_{\rm T}}\text{-}$ spectra of π and K with vHLLE+UrQMD

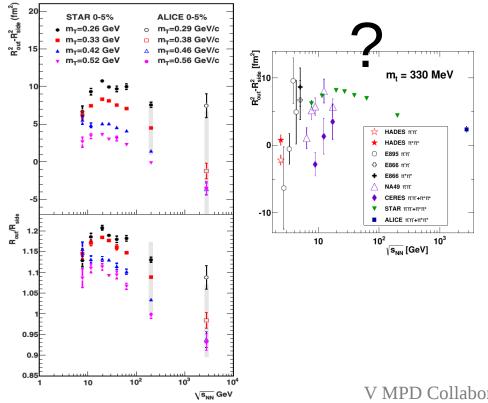

STAR data: PHYSICAL REVIEW C 96, 044904 (2017)

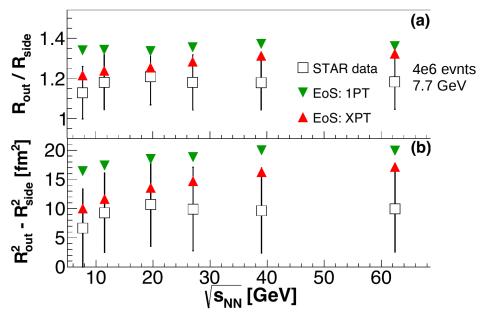


- vHLLE+UrQMD simulation with different EoS
- AuAu 11.5 GeV
- Pion pT spectra
- Kaon pT spectra

• vHLEE+UrQMD model with both EoS describe reasonably soft part of p_{τ} -spectra of pions and kaons

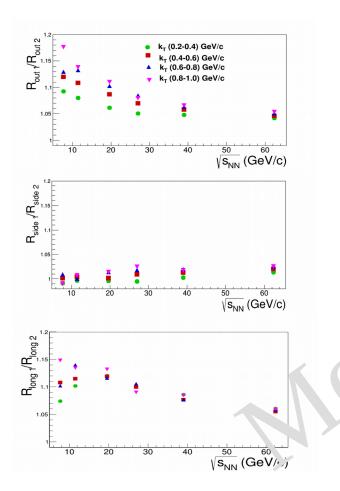
3D Pion radii versus m_{T} with vHLLE+UrQMD




- Femtoscopic radii are sensitive to the type of the phase transition
- **Crossover EoS** does better job at lowest collision energies.
- *R*_{out} (XPT) at high energies and *R*_{out} (1PT) at all energies are slightly overestimated
- $R_{\text{out,long}}(1\text{PT}) > R_{\text{out,long}}(X\text{PT})$ by value of ~1-2 fm. V MPD Collaboration meeting

R_{out} / R_{side} with vHLLE + UrQMD model

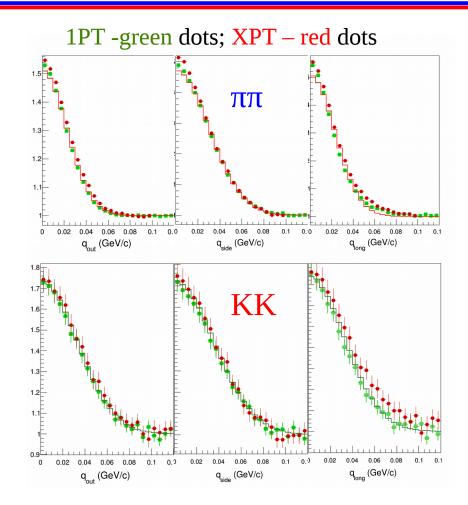
Exp. data: R_{out} / R_{side} and $R_{out}^2 - R_{side}^2$ as a function of $\sqrt{s_{_{NN}}}$ at a fixed $m_{_{T}}$ demonstrate a wide maximum near $\sqrt{s_{_{NN}}} \approx 20 \text{ GeV}$



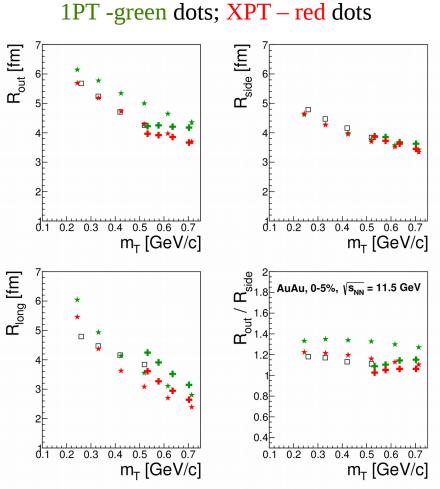
Present vHLLE+UrQMD calculations:

- R_{out} /R_{side} (XPT) agrees with almost all STAR data points within rather large systematic errors, while R_{out} /R_{side} (1PT) overestimates the data.
- **XPT** a monotonic increase in both quantities

Ratio of $R_{out,side,long}$ (1PT)/ $R_{out,side,long}$ (XPT) vs. $\sqrt{s_{NN}}$



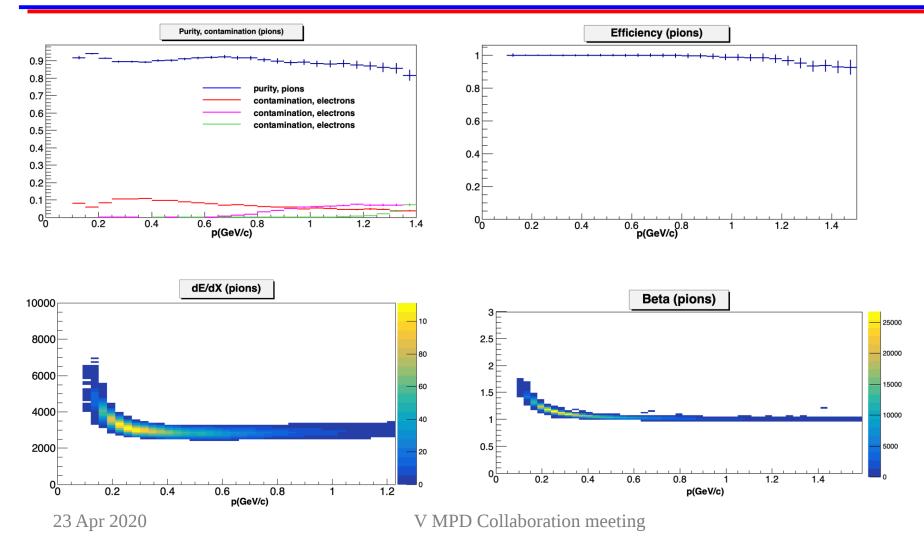
- Pion k_T divided into 4 bins
- R_{side} ratio practically coincide for both scenarios
- R_{out} and R _{mg} ratios for 1PT EoS are greater than for XPT EoS and demonstrating a strong k_T -dependence at low energy
- The difference comes from a weaker transverse flow developed in the fluid phase with 1PT EoS as compared to XPT EoS and its longer lifetime in 1PT EoS


Kaon correlation functions with vHLLE+UrQMD (NEW!)

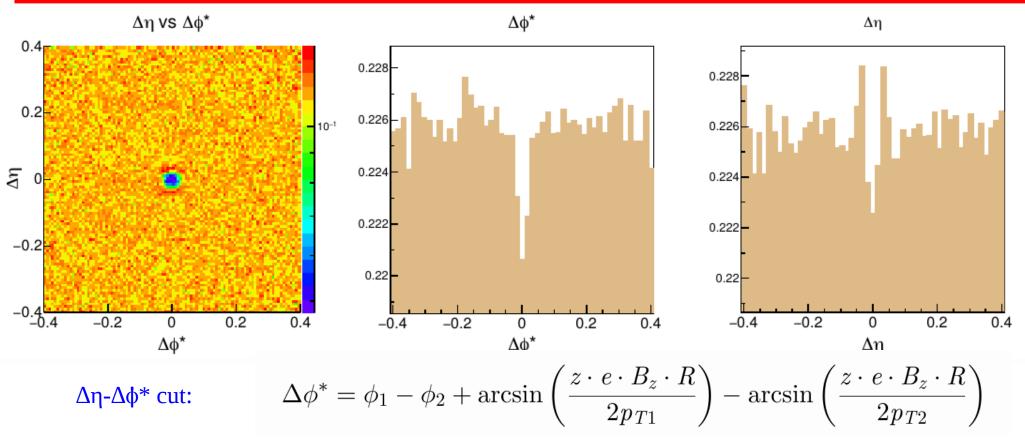
Analysis:

- Au+Au, $\sqrt{s_{_{NN}}} = 11.5 \text{ GeV}$
- $N_{\text{events}} \approx 4.10^5$ central events (vHLLE)
- Standard 3D Gaussian fit used
- Our, side, long projections
- Projections of 3D kaon correlation functions on out-side-long directions are more Gaussian
- **XPT** CF projections on long direction are visibly wider than 1PT especially for kaons → measurable with MPD

Radii π and K vs. mT with vHLLE+UrQMD


```
• Au+Au, \sqrt{s_{_{\rm NN}}} = 11.5 \text{ GeV}
```

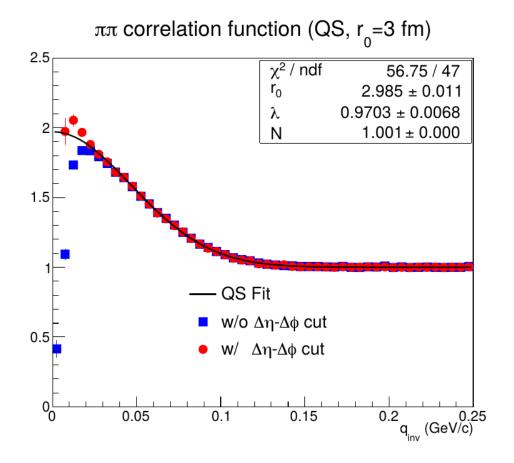
- As well as for π , kaon out and long radii greater for 1PT than for **XPT**
- Approximate m_T-scaling for pions and kaons


observed only for "side" radii

- R_{out} almost flat for 1PT
- $R_{long}(KK)$ is greater than $R_{long}(\pi\pi)$ kaons on average emitted later than pions
- Rout/Rside(KK) for kaons is less than for pions
- Approximately the same result is for Au+Au $\sqrt{s_{_{NN}}} = 7.7 \text{ GeV}$
- It is important to measure both kaons and pions

MPD response for femtoscopy

Two track effects (merging/splitting)



R is a given cylindrical radius, $\phi_{_{1,2}}$ are azimuthal angles of track at reconstructed vertex

23 Apr 2020

V MPD Collaboration meeting

Reconstructed correlation function

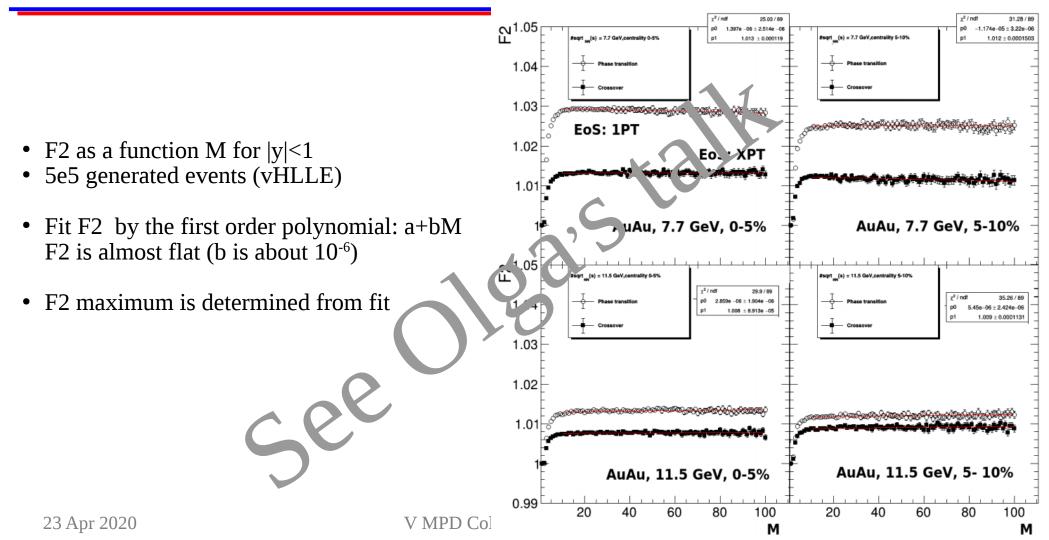
- UrQMD AuAu 11 GeV reconstructed evnts
- With cut $\Delta \eta < 0.04$ and $\Delta \phi * < 0.02$
- Without cut on $\Delta \eta$ and $\Delta \phi^*$
- Pion femtoscopic CF can be correctly reconstructed if two-tracks cuts are applied
- Good knowledge of tracking procedure is necessary

Factorial moments

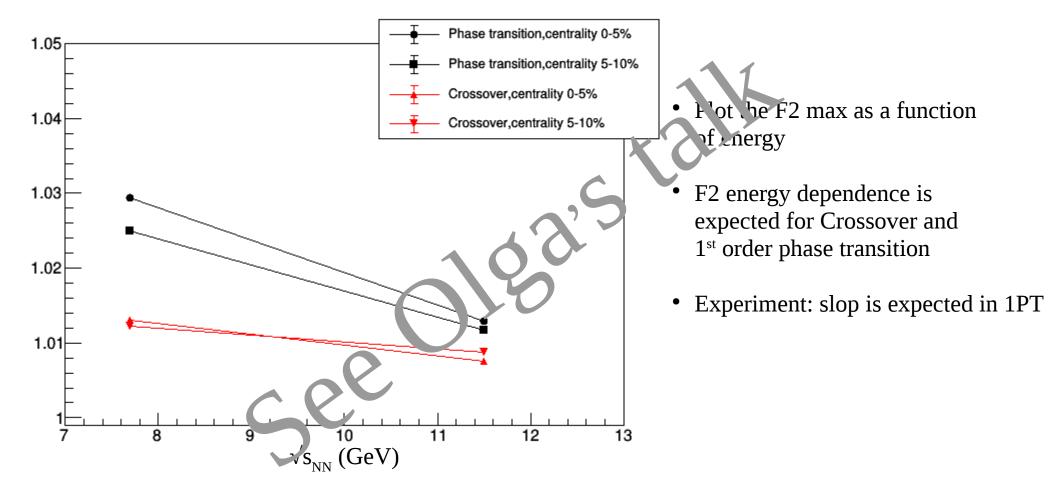
Proposed by A. Bialas and R. Peschanski (Nucl. Phys. B 273 (1986) 703) to study the dependence of the normalized factorial moments of the rapidity distribution on the size of the resolution

The scaled factorial moments are defined:

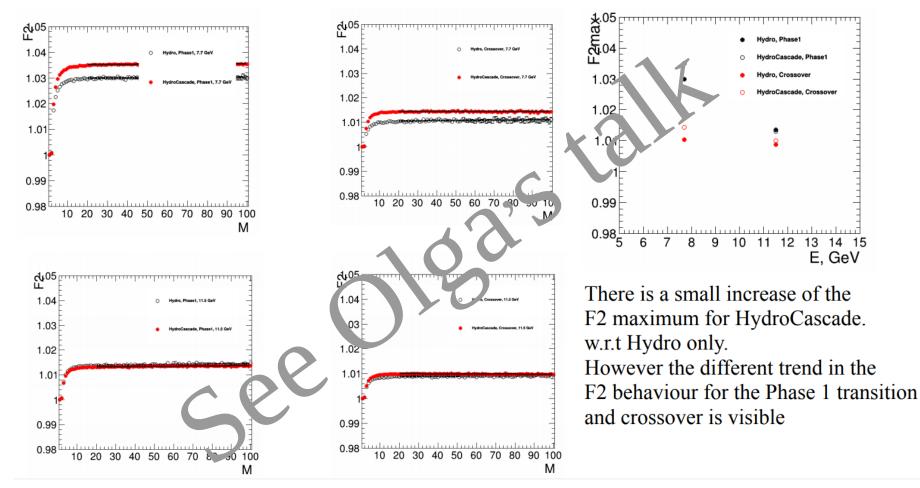
$$F_i = M^{i-1} \cdot \left\langle \frac{\sum\limits_{i=1}^{M} k_i \cdot (k_j - 1) \cdot \ldots \cdot (k_j - i + 1)}{\mathbb{W} \cdot (N - 1) \cdot \ldots \cdot (N - i + 1)} \right\rangle$$


where brackets <> denote averaging over a sample of a selected class of events. $N=k_1+...+k_M$ is a total number of particles, and M is number of intervals in rapidity window.

- Factorial moments do not depend on Min cose of statistical fluctuation of rapidity distribution
- And F depend on M if fluctuation a te to physical reason.


Olga: we need referer ces \rightarrow

This method have been use I at NA61, LEP, Tevatron, Protvino in ee, hh, hA, AA interactions at the various energies.


Factorial moments with vHLLE+UrQMD

Energy dependence of F2 maximum

Hydro and HydroCascade separately

Activities in software

Package for Femtoscopy analyses:

- ✓ Inherited from STAR (StHbtMaker) and ALICE (AliFemto)
- ✓ Keeps the same hierarchy as in ALICE (PckgName/, PckgNameUser/, macros/)
- ✓ Works with ROOT 5 and 6
- ✓ Lighter than ancestors:
 - \checkmark Most of STAR-developed classes replaced with ROOT ones
 - ✓ Better compression, smaller sizes
- Implemented running options (INDEPENDENT on experiment-dependent software):
 - ✓ Standalone mode compile with g^{++} (clang) and run on your "laptop"
 - ✓ Maker; Tasks will be also implemented

Factorial moments:

Factorial moments analysis code inherited from Mirabel experiment i wrww

Data formats (DST):

✓ General-purpose data format for Monte Carlo generation - M. Dst

(https://github.com/nigmatkulov/McDst)

- ✓ Similar to UniGen (developed at GSI)
- ✓ Lighter, faster, easy expandable, works wit. ROOT 5 and 6, g++ (clang)
- ✓ Possibility to add converters from other generators: Terminator, EPOS, AMPT, etc...
- ✓ Group has positive experience on the d⁺ a fo_nat developments:
 - ✓ (St)PicoDst format in STAR (st. v.lard) ata format for physics analysis)

Mini DST format:

Output data format derived from S1 'R¹ as been incorporated to MpdRoot.

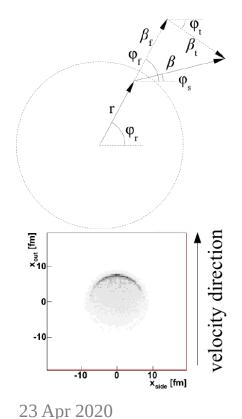
VHLLE interface software:

Allows to perform simulations with vHLLE+UrQMD model by simple and understandable way (vHLLE package/README.md) V MPD Collaboration meeting

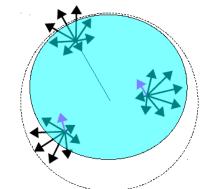
Bi+Bi 10⁵ minimum bias events pi-pi one dimension correlation function mT-dependence mT inclusive 3d CF ? ???

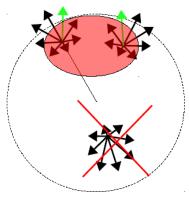
2020 plans

- Simulation of ion-ion collisions with different models and different EoS for $\sqrt{s_{_{NN}}}$ =4-11GeV energies to be continued
 - 3d CF analysis of $\pi\pi$ and KK
 - m_{T} dependence within MPD detector range
 - Factorial moment study
- New MpdFemto package
 - Test within MpdRoot
 - Two Track Cut tests (merging, splitting)
 - Finite Momentum Resolution tests
- New miniDST format
 - Compact reconstructed and generated information (ten times less than DST)
 - Reaction, track quality, TOF, Ecal and FHCal (first stage of MPD detector)
 - MiniDST created on-the-fly
- Software for factorial moment study will be developed

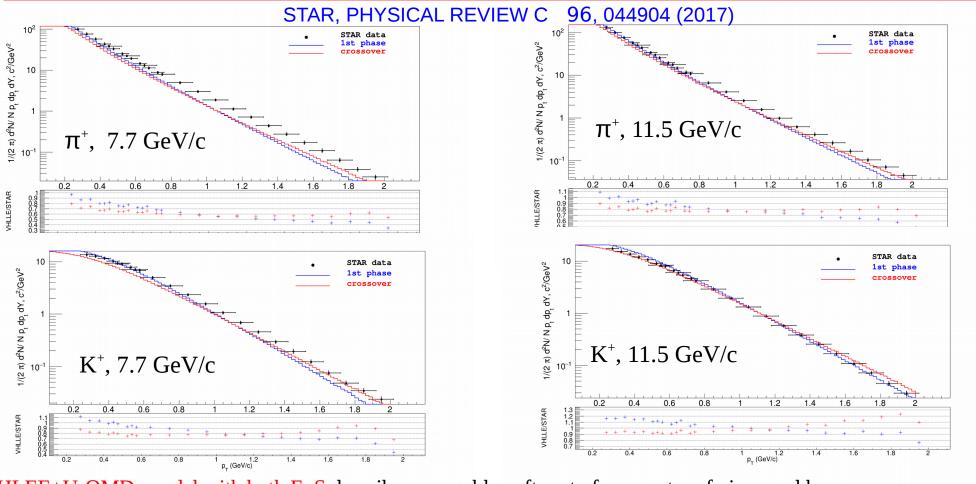

- Study of collective effects and dynamics of quark-hadron phase transitions via femtoscopic correlations of hadrons and factorial moments of particle multiplicity at NICA energies was performed
- First results look promising and this study is planned to be continued.
- Development of the data analysis methods and software integrated in the Multi-Purpose Detector (MPD) software environment was performed and will be continued
- Results were presented at WPCF, QFTHEP and NICA Days conferences
- Proceeding were published

Thank you for attention!


Femtoscopy with expanding source


Interference probes only parts of the source at close momenta – **homogeneity regions.**

[Yu.M. Sinyukov, Nucl. Phys. A 566, 589 (1994);] Figures and consideration from A. Kisiel Phys.Rev. C81 (2010) 064906



- A particle emitted from a medium will have a collective velocity β_f and a thermal (random) one β_t
- As observed p_T grows, the region from where pairs with small relative momentum can be emitted gets smaller and shifted to the outside of the source

p_{τ} - spectra of π and K with vHLLE+UrQMD

vHLEE+UrQMD model with both EoS describe reasonably soft part of p_T-spectra of pions and kaons 23 Apr 2020 V MPD Collaboration meeting