Identical charged pion femtoscopy correlations for 7.7 and 11.5 GeV with vHLLE+UrQMD

<u>L. Malinina (SINP MSU-JINR),</u> A. Romanova (MSU), G.Romanenko, K. Mikhaylov (ITEP-JINR)

04.06.2020

Details of Analysis $\pi\pi$ 7.7 & 11.5 GeV

centrality bins:	7.7 GeV	11.5 GeV
3.3fm 0-5%	2 000 000 ev	1 000 000 ev
4.7fm – 5-10%	2 000 000 ev	1 000 000 ev
6.6fm –10-20%	2 000 000 ev	1 000 000 ev

8 k_T bins for pions[GeV/c]: [0.15,0.25], [0.25,0.35], [0.35,0.45], [0.45,0.55], [0.55,0.65], [0.65,0.75], [0.75,0.85], [0.85,0.95] GeV/c

Monte Carlo: vHLLE+UrQMD Hydro: /zfs/store7.hydra.local/pbatyuk/mcDst/vHLLE_UrQMD/AuAu/

• Event selection

- At least one particle must be reconstructed as a pion (Kch)

Single track cuts |η| <1.0 and 0.15 p_τ <2.8 GeV/c

- QS weights only
- Fitting procedures:

$$C(q_{out}, q_{side}, q_{long}) = 1 + \lambda \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2)$$

$$C(q_{inv}) = 1 + \lambda \exp(-R^2 q_{inv}^2)$$

3D CF pions, sqrt(sNN) = 7.7 GeV, 3.3fm -- 0-5%

8 k_{T} bins for pions[GeV/c]: [0.15,0.95] GeV/c, 2 10⁶ MB events Reasonable fit, Only at last bin [0.85,0.95] GeV/c statistics is not enough

3D CF pions, sqrt(sNN) = 7.7 GeV, 4.7 fm -- 5-10%

8 k_T bins for pions[GeV/c]: [0.15,0.95] GeV/c, 2 10⁶ MB events Reasonable fit, Only at last bin [0.85,0.95] GeV/c statistics is not enough

MPD Femto meeting, Jun 4 2020

3D CF pions, sqrt(sNN) = 7.7 GeV, 6.6 fm -- 10-20%

8 k_{T} bins for pions[GeV/c]: [0.15,0.95] GeV/c, 2 10⁶ MB events Reasonable fit, at last 2 bins [0.75,0.85], [0.85,0.95] GeV/c statistics is not enough

MPD Femto meeting, Jun 4 2020

3D pion R(mT), sqrt(sNN) = 7.7 GeV

Old results (WPCF2019) Pions & Kaon radii versus m_T with vHLLE+UrQMD

- Old results are close to the new ones, some small difference in Rlong;
 - (scales in the figures are different)

3D pion R(mT), sqrt(sNN) = 11.5 GeV

0.4

0.4

0.4

0.45

0.45

0.5

0.55

0.55

m_T (GeV/c)

0.5

m_T (GeV/c)

0.45

0.5

0.55

m_T (GeV/c)

0-5%

MPD Femto meeting, Jun 4 2020

Old results (WPCF2019) Pions & Kaon radii versus m_{T} with vHLLE+UrQMD

 Old results are slightly different than the new ones
 Old results "pure weights" CF=N(qinv, wQS)/N(qinv, 1) New results mixing from different events D(qinv) is used CF=N(qinv, wQS)/D(qinv),

- For old data: randomization procedure for pairs (in Yura's cor some order) (for the new data ?)
- No cuts on momenta for the old results

Old results (WPCF2019) Pions & Kaon radii versus m_{T} with vHLLE+UrQMD

1D CF pions, sqrt(sNN) = 11.5 GeV, 3.3fm -- 0-5%, Gaussian fit

8 k_T bins for pions[GeV/c]: [0.15,0.95] GeV/c, 2 10⁶ MB events Gaussian fit,

1D CF pions, sqrt(sNN) = 11.5 GeV, 3.3fm -- 0-5%, Exponential fit

8 k_{T} bins for pions[GeV/c]: [0.15,0.95] GeV/c, 2 10⁶ MB events Exponential can be used instead

If we will have no enough statistics.... The difference between radii for 1PT and XPT is seen in Rinv(mT). Exponential fit is more convenient for pions.

Backup