Identical charged pion femtoscopy correlations for 7.7 and 11.5 GeV with vHLLE+UrQMD

L. Malinina (SINP MSU-JINR),
A. Romanova (MSU), G.Romanenko, K. Mikhaylov (ITEP-JINR)

04.06.2020

Details of Analysis $\pi \pi$ 7.7 \& 11.5 GeV

- centrality bins:
3.3fm -- 0-5\%
$4.7 \mathrm{fm}-5-10 \%$
6.6fm-10-20\%
7.7 GeV

2000000 ev
2000000 ev
2000000 ev

11.5 GeV

1000000 ev
1000000 ev
1000000 ev

- $8 \mathbf{k}_{\mathrm{T}}$ bins for pions[GeV/c]: [0.15,0.25], [0.25,0.35], [0.35,0.45], [0.45,0.55], [0.55,0.65], [0.65,0.75],[0.75,0.85],[0.85,0.95] GeV/c

Monte Carlo: vHLLE+UrQMD
Hydro: /zfs/store7.hydra.local/pbatyuk/mcDst/vHLLE_UrQMD/AuAu/

- Event selection
- At least one particle must be reconstructed as a pion (Kch)
- Single track cuts
$|\eta|<1.0$ and $0.15<\mathrm{p}_{\mathrm{T}}<2.8 \mathrm{GeV} / \mathrm{c}$
- QS weights only
- Fitting procedures:

$$
\begin{aligned}
& C\left(q_{\text {out }}, q_{\text {side }}, q_{\text {long }}\right)=1+\lambda \exp \left(-R_{\text {out }}^{2} q_{\text {out }}^{2}-R_{\text {side }}^{2} q_{\text {side }}^{2}-R_{\text {long }}^{2} q_{\text {long }}^{2}\right) \\
& C\left(q_{\text {inv }}\right)=1+\lambda \exp \left(-R^{2} q_{\text {inv }}^{2}\right)
\end{aligned}
$$

3D CF pions, sqrt(sNN) = 7.7 GeV, 3.3fm -- 0-5\%

$8 \mathbf{k}_{\mathrm{T}}$ bins for pions[GeV/c]: [0.15,0.95] GeV/c, $210^{6} \mathrm{MB}$ events
Reasonable fit, Only at last bin [0.85,0.95] GeV/c statistics is not enough

3D CF pions, sqrt(sNN) = $7.7 \mathrm{GeV}, 4.7 \mathrm{fm}--5-10 \%$

$8 \mathbf{k}_{\mathrm{T}}$ bins for pions[GeV/c]: [0.15,0.95] GeV/c, $210^{6} \mathrm{MB}$ events Reasonable fit, Only at last bin $[0.85,0.95] \mathrm{GeV} / \mathrm{c}$ statistics is not enough

3D CF pions, sqrt(sNN) = 7.7 GeV, $6.6 \mathrm{fm}-\mathrm{-}$ 10-20\%

$8 \mathbf{k}_{\mathrm{T}}$ bins for pions[GeV/c]: [0.15,0.95] GeV/c, $210^{6} \mathrm{MB}$ events Reasonable fit, at last 2 bins $[0.75,0.85],[0.85,0.95] \mathrm{GeV} / \mathrm{c}$ statistics is not enough

3D pion $R(m T)$, sqrt(sNN) $=7.7 \mathrm{GeV}$

Old results (WPCF2019) Pions \& Kaon radii versus m_{T} with vHLLE+UrQMD

- AuAu , sqrt(sNN) $=7.7 \mathrm{GeV} / \mathrm{cm}, \quad 0-5 \%$

- Old results are close to the new ones, some small difference in Rlong;
(scales in the figures are different)

3D pion $R(m T)$, sqrt(sNN) $=11.5 \mathrm{GeV}$

Old results (WPCF2019) Pions \& Kaon radii versus m_{T} with vHLLE+UrQMD

- AuAu , sqrt(sNN) $=11.5 \mathrm{GeV} / \mathrm{c}, \mathbf{0 - 5} \%$

- Old results are slightly different than the new ones
- Old results "pure weights" CF=N(qinv, wQS)/N(qinv, 1) New results mixing from different events D (qinv) is used CF=N(qinv, wQS)/D(qinv),
- For old data: randomization procedure for pairs (in Yura's cor some order) (for the new data ?)
- No cuts on momenta for the old results

Old results (WPCF2019) Pions \& Kaon radii versus m_{T} with vHLLE+UrQMD

- AuAu , sqrt(sNN) = 11.5 GeV/c, 0-5\%

- "pure weights" : $C F=N(q i n v, w Q S) / N(q i n v, 1)$
- New results with mixed denominator and "pure weights" coincides, as it should be
- Randomization procedure (?), no cut on momenta (in old proceduré) ${ }^{\text {to }}$

1D CF pions, sqrt(sNN) = $11.5 \mathrm{GeV}, 3.3 \mathrm{fm}-\mathbf{- - 5 \%}$, Gaussian fit

$8 \mathbf{k}_{\mathrm{T}}$ bins for pions[GeV/c]: [0.15,0.95] GeV/c, $210^{6} \mathrm{MB}$ events Gaussian fit,

1D CF pions, sqrt(sNN) = $11.5 \mathrm{GeV}, 3.3 \mathrm{fm}-\mathbf{0 - 5 \%}$, Exponential fit

$8 \mathbf{k}_{\mathrm{T}}$ bins for pions[GeV/c]: [0.15,0.95] GeV/c, $210^{6} \mathrm{MB}$ events
Exponential can be used instead

1D pion $R(m T)$, sqrt(sNN) $=11.5 \mathrm{GeV}, 0-5 \%$

If we will have no enough statistics....
The difference between radii for 1PT and XPT is seen in Rinv(mT).
Exponential fit is more convenient for pions.

Backup

