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Introduction

It was proposed by A. Bialas and R. 
Peschanski (Nucl. Phys. B 273 
(1986) 703) to study the 
dependence of the normalized 
factorial moments of the rapidity 
distribution on the bin size δy:

  1. if fluctuations are purely 
statistical no variation of moments 
as a function of δy is expected

  2. observation of variations 
indicates the presence of physics 
origin fluctuations

M = 1

M = ...

M = 2

Δy

F i=M
i−1

×⟨

∑
j=1

M

k j×(k j−1)×...×(k j−i+1)

N×(N−1)×...×(N−i+1)
⟩

y = δ Dy/M
M — number of bins
Dy — size of mid rapidity 
window
N — number of particles in Dy
kj-the number of particles in bin j

Note: there is a set of 
definitions of moments and 
cumulants.



What do we see with 
factorial moments: 

simplified case
Mathematical model:
 an accident number of 

particles per event organized 
in groups 

 groups are distributed 
uniformly along Dy interval. 

 Each group has the random 
number of particles. 

 Consider two cases:
 Point-like group - all 

particles inside group has 
the same y, 

 Non point-like group - 
particles are distributed over 
y with respect to the group 

center 

 number of groups per event is Poissonian
 number of particles per group has geometrical 
      distribution.
Multiplicity distributions of particles in Dy interval is:

 
 

M = 1

M = 4

Point-like groups

Under condition a<<1, this will give the same result as Negative 
Binomial Distribution which describes multiplicity distribution at 
middle interaction energy.

Nonpoint-like groups 
with width s
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Simple examples: pointlike groups

Independent production of particles with poisonian 
distribution leads to Fi(M) = 1.

Under hypothesis of independent pointlike groups 
Fi(M) grows as polynomial of order (i-1)

 

M.Yu.Bogolyubsky et al (11 co-authors), 
Clan model and factorial moments of the 
multiplicity distribution in intervals., 
Phys.Atom.Nucl. 57: 2132 - 2139, 1994

Toy events have uniform rapidity distribution in 
interval [-1,1]
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Simple examples: non-pointlike groups

For non-pointlike group with width s.              
Fi (M) = constant when  dy = DY/M << s

Several processes with different 
characteristic widths (s1>s2>..>sN)                   
   the factorial moments are increasing untill        
       dy = DY/M << sN

The power of growth depends on
 Mean number of groups
 Mean number of particles per group
 Characteristic widths of groups
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Latest studies of intermittency in the 
world: theory and experiments

 Intermittency have been studied at LEP, Tevatron, Protvino in ee, hh, hA, AA interactions at the 
various energies. There are plenty of interpretations including Clan Model proposed by L. Van 
Hove, intermittency and fractals of the different origin.

  Recent studies in NA49, NA61
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NA61/SHINE, 
arXiv:2002.06636,2020

NA49, EPJ Web of conf, 71, 
00035(2014)
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Fig.1 Variation of DF2(M) with natural logarith of number of bins, M
 for AMPT simulated Pb+Pb collisions at 2.76 TeV per nucleon pair energy.
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critical point[7] then φ2 = φB
2,cr = 5

6. In or-
der to overcomeuncorrelated tracks to clearly
observe the intermittent behaviour an artifi-
cial set of mixed events has been constructed.
This mixed data set is created by merging
tracks from different AMPT generated origi-
nal eventsintoneweventshavingsame(mean)
multiplicities. In this way mixed events are
necessarily contain uncorrelated tracks. Us-
ing the AMPT generated and mixed data
sets, thecorrelator, ∆ F2(M ) = F A M P T

2 (M )−
F mixed

2 (M ), is calculated and is said to re-
veal the critical behaviour[6]. The ∆ F2(M )
is expected to show the same power law be-
haviour with the number of bins as shown by
the pure critical system given by Eq.2. i.e.

∆ F2(M ) ∝ M 2φ2 .

Results and Discussions
Fig.1depicts thevariationsof ∆ F2(M ) with

M in η and pt spaces. In the final presenta-
tion wewill also show thecalculation of errors
and thevariations∆ F2(M ) with M2. A power
law behaviour is discernible in Fig1for within
some limited range of M and not for the en-
tire η and pt spaces selected for the present
study. It is also observed from thefigure that
the power law behaviour is much stronger in
η space.
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Au-Au, UrQMD+vHLLE

7.7 GeV

11.5 GeV

F2Max

♦ Different energy dependence 
is expected for Crossover 
and 1st order phase transition

♦ There is a mild dependence 
on centrality for 1st order 
phase transition
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Hydro and HydroCascade separately

♦ There is a small increase of the
F2 maximum for HydroCascade.
w.r.t Hydro only.

♦ However the different trend in the
F2 behaviour for the Phase 1 transition
and crossover is visible
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Models comparison: 
UrQMD, UrQMD+vHLLE, HYDJET++

● UrQMD, HYDJET++ 
are comparable with

       vHLLE+UrQMD 
       crossover

● Change of 
● Multiplicity 
● volume size
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Summary

● Normalized factorial moments as a function of the size of the observation 
interval are sensitive to the type of phase transition.
• We observe the different energy behaviour for the Crossover and 1st order 

phase transition in the frame of the URQMD+VHLLE model.
• The energy behaviour is connected to the development of the phase 

transition and hydrodynamical phase itself. Cascade introduces the mild 
excess to the maximum of the normalized factorial moments.

● We start to work with reconstructed objects. The plan is to take into account the 
sample efficiency, purity and track momentum resolution.
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Factorial moments addition

 Divide interval D on M bins. l – particles are distributed among m-
groups.

 The probability in the bin (i) we will have n particles from m1 group 
under condition that l particles are in m groups:

 

 Under fixed l, m, m1:
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Factorial moments addition

 Let’s assume the uniform distribution of groups along interval y

 

 After calculation:

 

 For F2:
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Resolution of detector 13



Latest studies in the world: theory 
and experiments

● Intermittency (fluctuations of various different sizes in 1D, 2D and 3D phase space) have been 
studied at LEP, Tevatron, Protvino in ee, hh, hA, AA interactions at the various energies. There 
are plenty of interpretations including Clan Model proposed by L. Van Hove, intermittency and 
fractals of the different origin

 Some latest studies for pp and AA (NA49, NA61, ALICE):
• A Monte Carlo Study of Multiplicity Fluctuations in Pb-Pb Collisions at LHC Energies, Ramni Gupta, 

Journal of Central European Green Innovation 4(4) pp 116-126 (2016)
• Search for the critical point of strongly interacting matter in NA49  Katarzyna Grebieszkowa for the NA49 

collaboration, arXiv:0907.4101
• Scaling Properties of Multiplicity Fluctuations in the AMPT Model  Rohni Sharma and Ramni Gupta, AHEP, 

v2018, AricleID 6283801
• Searching for the critical point of strongly interacting matter in nucleus-nucleus collisions at CERN SPS, 

Nikolaos Davis 
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