

Femtoscopy with identified particles for NICA/MPD

P. Batyuk, L. Malinina, K. Mikhaylov, G.Nigmatkulov

Dubna, Joint Institute for Nuclear Research

June 4, 2019

P. Batyuk

Outline:

- Motivation
- Hybrid vHLLE+UrQMD model
- Comparison with BES-I STAR
 - pions
 - first results with kaons (NEW!)
- Package for Femtoscopic Analysis
- Summary

Femtoscopy formalism

Correlation femtoscopy:

Measurement of space-time characteristics R, c_{τ} of particle production using particle correlations due to the effects of quantum statistics (QS) and final state interactions (FSI)

Two-particle correlation function:

Parametrizations used:

1D CF: $C(q_{inv}) = 1 + \lambda e^{-R^2 q_{inv}^2}$ R is a Gaussian radius in PRF, λ is a correlation strength parameter 1D-analysis is sensitive only to the system size averaged over all directions. 3D CF: $C(q_{out}, q_{side}, q_{long}) = 1 + \lambda e^{-R_{out}^2 q_{out}^2 - R_{ind}^2 - R_{long}^2 q_{long}^2}$ Both R and q are in Longitudinally Co-Moving Frame (LCMS) 3D-analysis gives an access to the three system sizes in three directions separately.

Definition of femtoscopy radii:

S. Pratt. Phys. Rev. D 33 (1986) 1314
 G. Bertsch. Phys. Rev. C37 (1988) 1896

Motivation

• Femtoscopy allows one:

- To obtain spatial and temporal information on particle-emitting source at kinetic freeze-out
- To study collision dynamics depending on EoS
- RHIC Beam Energy Scan program (BES-I): $\sqrt{s_{NN}} = 7.7$, 11.5, 19.6, 27, 39 GeV Measured pion and kaon femtoscopic parameters: m_T -dependences of radii, flow-induced x - p correlations
- NICA energy range: $\sqrt{s_{NN}} = 4 11 \text{ GeV}$

Expected features of first order phase transition (1PT)

P. Batyuk

3D Pion radii versus m_T with vHLLE+UrQMD

$R_{out}/R_{side} ext{ with vHLLE} + ext{UrQMD model}$

Exp. data: R_{out}/R_{side} and $R_{out}^2 - R_{side}^2$ as a function of $\sqrt{s_{NN}}$ at a fixed m_T demonstrate a wide maximum near $\sqrt{s_{NN}} \approx 20 \text{ GeV}$ **Our calculations:** (a) R_{out} / R_{sidé} STAR data EoS: 1PT LOS: XPT R_{out}^2 - R_{side}^2 [fm²] (b) 20 20 60 10 30 40 50 √s_{NN} [GeV] R_{out}/R_{side} (XPT) agrees with almost all STAR data points within rather large systematic errors, while R_{out}/R_{side} (1PT) overestimates the data.

P. Batyuk

Ratio of $R_{out,side,long}(1PT)/R_{out,side,long}(XPT)$ vs. $\sqrt{s_{NN}}$

- *R_{side}* practically coincide for both scenarios
- R_{out} and R_{long} for 1PT EoS are greater than for XPT EoS demonstrating a strong k_T -dependence

Why?

The difference comes from a weaker transverse flow developed in the fluid phase with 1PT EoS as compared to XPT EoS and its longer lifetime in 1PT EoS

Kaon correlation functions with vHLLE+UrQMD (NEW!)

Analysis:

- AuAu, $\sqrt{s_{NN}} = 11.5 \text{ GeV}$
- $N_{events} \approx 400000$
- Standard 3D Gaussian fit used
- Projections of 3D-kaon correlation functions on out-side-long directions are more Gaussian
- XPT CF projections on long direction are visibly wider than 1PT especially for kaons

Pion & Kaon radii vs. m_T with vHLLE+UrQMD

P. Batyuk

Pion & Kaon radii vs. m_T with vHLLE+UrQMD

P. Batyuk

Summarising ...

- Hydro phase lasts longer with 1PT.
- vHLLE+UrQMD with XPT-scenario describes BES-I STAR femtoscopy radii at $\sqrt{s_{NN}} = 7.7, 11.5$ GeV better than the 1PT-scenario.
- R_{long} for 1PT is greater than for XPT.
- R_{out}/R_{side} for 1PT also is greater than for XPT.
- First results with kaon femtoscopy look promising and this study is planned to be continued.

Package for Femtoscopic Analysis

• Inherited from STAR (StHbtMaker) • General-purpose data format for and ALICE (AliFemto) Monte Carlo generators -• Keeps the same hierarchy as in McDst https: ALICE (PckgName/, //github.com/nigmatkulov/McDst PckgNameUser/, macros/) • Similar to UniGen (developed at Works with ROOT 5 and 6 GSI) • Lighter than ancestors: • Lighter, faster, easy expandable, Most of STAR-developed works with ROOT 5 and 6, g++ classes replaced with ROOT (clang) ones • Better compression, smaller • Possibility to add converters sizes from other generators: Terminator, EPOS, AMPT ... • Implemented running options

- Group has a positive experience on the data format developments:
 - PicoDst format in STAR (standard data format for physics analysis)

(INDEPENDENT on

your "laptop"

implemented

experiment-dependent software):

• Maker; Tasks will be also

• Standalone mode – compile

with g++ (clang) and run on

Package for Femtoscopic Analysis

Output ROOT tree:

It allows:

- To set track cuts, particle pair cuts, number of events to be used for mixing ...
- To get 1D and 3D correlation functions for a set of k_T -bins
- To switch on / off different physics effects (QS, FSI ...)

```
Main macro to define conditions of user's
                analysis
int main(int argc, char* argv[]) {
 // Create and set track cut
trackCut->setPdgId(particlePdg);
trackCut->setEta(-1., 1.);
trackCut->setPt(0.15, 1.55);
trackCut->setMass(particleMass);
  Set how many events to mix
11
hbtAnalysis->setNumEventsToMix(10);
// Lednickv weight generator
hbtWeight->setPairTvpe(pairTvpe):
hbtWeight->setCoulOn();
hbtWeight->setQuantumOn():
hbtWeight->setStrongOff():
hbtWeight->set3BodyOff();
// Create 1D correlation function
// integrated over kT
StHbtModelQinvCorrFctn *oneDim =
new StHbtModelQinvCorrFctn
("hTheorQinv", 40, 0., 0.4):
// Create 3D correlation function
// integrated with kT binning
StHbtModelBPLCMS3DCorrEctnKt *threeDim =
new StHbtModelBPLCMS3DCorrFctnKt
("hTheorBPLCMS", 80, -0.4, 0.4, 4,
0.15. 0.59):
```

Where will it be studied?

MPD Layout:	Benefits:
CPC ECal SC Cal FD FHCal ECT Vale	 Hermeticity, 2π-acceptance in azimuth 3D-tracking (TPC, ECT) Vertex high-resolution (IT) Powerful PID (TPC, TOF, ECAL) π, K up to 1.5 GeV/c K, p up to 3 GeV/c γ, e from 0.1 GeV/c up to 3 GeV/c Precise event characterization (FHCAL) Fast timing and triggering (FFD) Low material budget High event rate (up to 7 kHz)
Participants:	Realization progress:
 Tsinghua University, Beijing, China GSI, Darmstadt, Germany WUT, Warsaw, Poland MEPhI, Moscow, Russia INR, RAS, Russia PPC BSU, Minsk, Belarus Dubna, JINR, Russia 	 Preparation for / start of mass production First stage is planned to be started in 2021 Second stage and full commissioning (IT + end-cups) - 2023

Femtoscopy & correlations activities within RFBR mega grant

Activity has been supported by the RFBR grant for a period of three years (2019-2021)

Aim: Study of collective effects and dynamics of quark-hadron phase transitions via femtoscopic correlations of hadrons and factorial moments of particle multiplicity at the NICA energies

Our physics to be studied:	Our the most future plans:
• Development of data analysis methods and software to be integrated in the MPD software environment	• Software development for femtoscopic analyses & factorial moments of multiplicity distributions
• Analysis of simulated events with different event generators (in particular, UrQMD+vHLLE) at the NICA energies	• Femtoscopic analysis for pions and kaons (correlation functions, source functions) for the events simulated (model investigations)
• Understanding dependence of femtoscopic radii and scaled factorial moments of particle multiplicity on the initial conditions and properties of nuclear matter	• Study of detector effects on femtoscopic measurements to be taken into account when doing analysis for reco-output from MPD
EoS	

Thank you for your attention!

P. Batyuk