Reconstruction of π^0 and η mesons with light ECAL

- Sergey Kiselev, ITEP Moscow for the ECAL group
- Input info
- Acceptances
- Reconstruction efficiencies
- Invariant mass spectra $M_{\gamma\gamma}$
- Extracted signals
- True signals
- S/B
- Summary

Input info

- CbmRoot package (trunk Sep2010), Geant3
- •UrQMD (b=0 fm) events simulated and reconstructed in the light ECAL by Misha Prokudin:
 - 10⁶ p+C 30 GeV
 - 10⁵ C+C 25 AGeV
 - 10⁴ Cu+Cu 25 AGeV
 - 10⁴ Au+Au 25 AGeV
- STS + Light ECAL (LECAL)
- LECAL wall at 6 m from a target Size: X x Y = 5.28 x 4.32 m², beam hole 0.24 x 0.24 m² Central part ($\rho < 1$ m): 3 x 3 cm² cells Peripheral part (($\rho > 1$ m): 6 x 6 cm² cells
- p_{γ} cut: $p_{\gamma} > 0.5 \text{ GeV/c}$
- ECAL cluster cut: $\chi^2 < 25$

acceptance

γ (R_{vtx}<0.1cm) primary π^0

primary $\eta \rightarrow \gamma \gamma$

<accep.> : ~ 90 %

~20 %

~35%

04.04.2011

 $\gamma(R_{vtx} < 0.1 \text{ cm})$ reco efficiency: the example C+C 18.34 reco γ /event: 18.17 matched with MC tracks 16.45 of them $R_{vtx} < 0.1 \text{ cm}$ 11.81 (72%) of them are photons 11.30 (96%) of them enter ECAL 0.51 (4%) "enter" ECAL by e[±] due to conversion 4.64 (28%) are n, π^{\pm} , p, ...

42.65 MC tracks/event enter ECAL 13.53 of them are photons 12.45 of them R_{vtx} <0.1 cm

> γ reco efficiency = 11.30 / 12.45 = 91% converting part = 0.51 / 11.81 = 4%

04.04.2011

π^0 and η reco efficiency: the example Cu+Cu

 π^0

9.0 reco primary/ev.:
8.0 (89%): 2γ enter ECAL
0.7 (8%): 1γ enter ECAL
0.3 (3%): 0γ enter ECAL

106.8 primary/ev. 22.8 enter ECAL

reco efficiency = 8.0/22.8= 35 (%) converting part: 11% $\eta \rightarrow \gamma \gamma$

0.73 reco primary/ev.:
0.65 (87%): 2γ enter ECAL
0.06 (9%): 1γ enter ECAL
0.02 (4%): 0γ enter ECAL

4.22 primary/ev. 1.42 enter ECAL

reco efficiency = 0.65/1.42= 46 (%) converting part: 13%

04.04.2011

reco efficiency: primary π^0 C+C Cu+Cu Au+Au

..... 12 14 p (GeV/r

p+C

04.04.2011

17th CBM meeting, Dresden S.Kiselev

reco efficiency: primary $\eta \rightarrow \gamma \gamma$ p+C C+C Cu+Cu Au+Au

04.04.2011

17th CBM meeting, Dresden S.Kiselev

M_{γγ} spectra: Cu+Cu, Au+Au Cu+Cu Au+Au

extracted signals: p+C π^0 n

 $\sigma_{\pi} \approx 6 \text{ MeV}$

 $\sigma_n \approx 18 \text{ MeV}$

04.04.2011

17th CBM meeting, Dresden S.Kiselev

extracted signals: C+C, Cu+Cu C+C: π^0 Cu+Cu: π^0

$\sigma_{\pi} \approx 6 \text{ MeV}$

 $\sigma_{\pi} \approx 10 \text{ MeV}$

04.04.2011

true signals: p+C

$\sigma_{\pi} \approx 6 \text{ MeV}$

 π^0

 $\sigma_n \approx 18 \text{ MeV}$

04.04.2011

true signals: C+C

 $\sigma_{\eta} \approx 20 \text{ MeV}$

04.04.2011

true signals: Cu+Cu π^0 η

true signals: Au+Au

η

17th CBM meeting, Dresden S.Kiselev

$S/B_{2\sigma}$ (signif.) for extracted signals primary π^0

p _t (GeV/c)	0.4 - 0.8	0.8 - 1.2	1.2 – 1.6
p+C	4.06(343)	11.60(161)	24.89(73)
C+C	0.65(184)	2.00(100)	4.24(46)
Cu+Cu	0.04(33)	0.13(25)	0.24(12)

primary $\eta \rightarrow \gamma \gamma$

p _t (GeV/c)	0.4 - 0.8	0.8 - 1.2	1.2 - 1.6
p+C	0.13(31)	0.29(23)	0.47(11)

Estimation of S/B(%) (signif.) from true signals primary π^0

p _t (GeV/c)	0.4 - 0.8	0.8 - 1.2	1.2 – 1.6
Au+Au	0.27(8)	0.79(7)	1.55(5)

primary $\eta \rightarrow \gamma \gamma$

p _t (GeV/c)	0.4 - 0.8	0.8 - 1.2	1.2 – 1.6
C+C	1.67(9)	3.16(6)	4.77(3)
Cu+Cu	0.12(1.7)	0.18(1.1)	0.31(0.6)
Au+Au	0.014(0.5)	0.022(0.4)	0.037(0.3)

Summary

		primary π^0			primary $\eta \rightarrow \gamma \gamma$			
	p+C	C+C	Cu+Cu	Au+Au	p+C	C+C	Cu+Cu	Au+Au
Statistics (events)	106	105	104	104	106	105	104	104
Yield/event	2.5	13.5	107	365	0.10	0.53	4.22	14.2
Acceptance eff.	17 %	22 %	21 %	21 %	26 %	34 %	34 %	34 %
Reconstruction eff.	94%	84%	35%	4.9%	96%	87%	46%	8.8%
Total eff.	16%	18%	7%	1%	25%	30%	16%	3%
σ (MeV)	6.1	6.4	10.1	-	18.2	20.8	-	-
S/B	1.65	0.22	0.016	0.0019	0.11	0.016	0.0011	0.00014
Significance	509	207	33	8	46	15	2.6	0.8