

1

Status of KK femtoscopy in ALICE

(Based on Alice Week presentation)

Konstantin Mikhaylov and Alexey Stavinskiy

ITEP, Russia

Outline

- Physics Motivation of KK femtoscopy
- Experimental results
- Distortions of K+K+ correlation function:
 - PID's of Kaons
 - Pair PID
 - Splitting-merging
 - Resonances ($vt \ge source size$): K*, Φ
- First results for K+K-
- Conclusion

Physics motivation

- Measured space-time extent of the particle emitting region for KK is pure than for $\pi\pi$.
- Kaon femtoscopy signal is cleaner than pion femtoscopy signal since Kaons are less affected by resonance decay.
- The m_{τ} dependence: m_{τ}(KK) > m_{τ}($\pi\pi$).
- The strangeness distillation mechanism could lead to strong temporal emission asymmetries between kaons and anti-kaons [S.Soff et al., J.Phys.G23,2095(1997);D.Ardouin et al., Phys.Lett.B446,191(1999)].
- Due to the highest branching ratio of Φ meson is KK the ΦΦ residual correlations could be seen from KK correlation function.

Experimental results

The duration time $\Delta \tau = sqrt(r_{out}^2 - r_{side}^2)/\beta =$ 2.2± 5.2(stat.) ± 5.1(sys) fm

RHIC-STAR: Au+Au sqrt(S_{NN})=200GeV

[Phys.Rev.C 74 (2006),054902]

R = 4.09 ± 0.46(stat.) ± 0.31(sys) fm and λ = 0.92±0.23(stat)±0.13(sys) at the mean transversemass <m₇> = 1.07 GeV.

Experimental results II

5

RHIC-PHENIX: Au+Au sqrt(S_{NN})=200GeV

[M. Heffner J., Phys. G 30 (2004) S1043-S1047], [nucl-ex/0510014]

- an approximately "universal" m_τ dependence is usually attributed to collective flow
- KK one dimensional radius 3-5 fm

ALICE Software and input

- Aliroot (with AliFemto) v4-12-Rev-02
- Local analysis of 3K events PDC2007: HIJING PbPb 5.5 TeV (dN_{ch}/dy~6500)
- 1D KK correlations
- 0.1 < P_T < 1.0 GeV/c
- Anti-splitting cut
- Gaussian distr.: $d^3N/d^3r^* \sim \exp(-r^{*2}/(4r_0^2))$

KK r_0 : 2 and 5 fm

• Source size for kaons from K* decay was corrected on $v_{K^*}T_{K^*}$: $r'_0 = sqrt(r_0^2 + (v_{K^*}T_{K^*})^2)$

PID

7

K.Mikhaylov, A.Stavinsky ITEP

K+ Mothers

π Mothers

Resonances can play significant role for $\pi\pi$ correlations

K.Mikhaylov, A.Stavinsky ITEP

Pair PID

100 events PbPb@5.5 TeV HIJING Q_{INV}<0.25GeV/c

7% 7222(6.95165%) 15298(14.7253%) 7652(7.36555%) 39% 8181(7.87475%) 2067(1.98962%) 8077(7.77464%) 3129(3.01187%) 345(0.332085%) 5022(4.83401%) 1352(1.30139%) 46896(45.1405%) 103889 (100%)

K+K+:Model&"Experiment"

Splitting cut was applied

Source "expansion" due to K*

12

One K is direct and the other one from K* decay

• K_{dir}K_{dir} source size is

smaller than $K_{dir}K_{K^*}$

due to K* decay length

- Assume K* source size the same as K_{dir}K_{dir}(r₀)
- Measured source in second case:
- $r'_{0} = sqrt(r_{0}^{2}+(vT)^{2}) [K_{dir}K_{K^{*}}] or$
- $r'_{0} = sqrt(r_{0}^{2}+(v_{1}T_{1})^{2}+(v_{2}T_{2})^{2})[K_{K^{*}}K_{K^{*}}]$
- Get v of K* from generator (vt~2.6 fm)

K+K+: K* source "expansion" (2fm)

Source "expansion" due to K* decay (r_0 =2fm, K* v**T** ~ 2.6fm)

K⁺K⁺: K^{*} "expansion" (5fm)

5155 / 73

6.687e+07 ± 2377

4 402e+05 / 77

 7.628 ± 0.000

6.203e+07 ± 2239 -0.002211 ± 0.000221

30

40

 -0.002047 ± 0.000206 7.079 ± 0.000

Source "expansion" due to K* decay (r_0 =5fm, K* v**T** ~ 2.6fm)

K+K-: Model&"Experiment"

-

K+K-: K* "expansion" (2fm)

Residual correlations for $\phi\phi$ **correlations**

ΦΦ residual CF in K+K-

Conclusion

1. There are several sources of the KK correlation function "distortion":

Single Kaon purity, Pair purity, Splitting-merging, Resonances

- 2. K* expansion could be important for KK
- 3. Study of correlated background to be continued (fake pairs!)
- 4. $K_{s}^{0}K^{+(-)}$ is for $\Phi\Phi$ residual correlations?

Thank you for your attention!

Extra Slides

K+K+:Different contribution

K+K-: Different contribution

K.Mikhaylov, A.Stavinsky ITEP

Extra Slides

Fake contribution to K+K+ Good KK: 57.9429 Fake KK : 42.0571 pi+K+ : 27.2202 pi+pi+ : 3.57522 pK+ : 3.3108 e+K+ : 4.3075 mu+K+ : 1.12317 pi+e+ : 0.999998 ppi+ : 0.71421 others : 0.733494