

Status of KK femtoscopy in ALICE

Konstantin Mikhaylov and Alexey Stavinskiy ITEP, Russia

- Physics Motivation of KK femtoscopy
- Existing data
- Distortions of K+K+ correlation function:
 - PID's of Kaons
 - Resonances (vτ ≥ source size): K*, Φ
 - Residual correlations
- First results for K+K-
- Conclusion

- Physics:
 - Strangeness enhancement is one of the signatures of QGP
 - The strangeness distillation mechanism could lead to strong temporal emission asymmetries between kaons and antikaons [S.Soff et al., J.Phys.G23,2095(1997);D.Ardouin et al.,Phys.Lett.B446,191(1999)].
 - Kaons is more penetrating particles than pions
 - The mT dependence: $mT(K) > mT(\pi)$.
- Methodics:
 - Kaon femtoscopy signal is more pure than pion femtoscopy signal since kaons are less affected by resonance decay.
 - Since the highest branching ratio of φ meson is φ→ KK and decay momentum relatively small (~100MeV/c) the φφ residual correlations could be seen from KK correlation function.

Experimental data

CERN-SPS: Pb+Pb at 158 AGeV/c [PRL,87(2001)112301] Correlation Function (C_2) 9.0 8.1 1 1 9.1 (C_2) K^+K^+ Q_{TO} < 40 MeV/c Q_L < 40 MeV/c Q_{TS} < 40 MeV/c Q_{TS} < 40 MeV/c Q_L < 40 MeV/c Q_{TO} < 40 MeV/c 100 150 100 150 100 150 0 50 0 50 0 50 Q_L [MeV/c] Q_{TS} [MeV/c] Q_{TO} [MeV/c] Longitudinal Radius R_L [fm] ransversal Radius R_T [fm] 7 • $\mathbf{K}^+ \mathbf{K}^+$ • K⁺ K⁺ 6 $\circ \pi^+ \pi^+$ $\circ \pi^+ \pi^+$ 5 5 3 3 0.5 0.5 0 0 m_T [GeV/c²] $m_T [GeV/c^2]$ The duration time

 $\Delta \tau = \operatorname{sqrt}(r_{out}^2 - r_{side}^2)/\beta =$ 2.2± 5.2(stat.) ± 5.1(sys) fm

RHIC-STAR: Au+Au sqrt(S_{NN})=200GeV

[Phys.Rev.C 74 (2006),054902]

R = 4.09 ± 0.46(stat.) ± 0.31(sys) fm and λ = 0.92±0.23(stat)±0.13(sys) at the mean transversemass <m_T> = 1.07 GeV.

Experimental data

RHIC-PHENIX: Au+Au sqrt(S_{NN})=200GeV

[M. Heffner J., Phys. G 30 (2004) S1043-S1047], [nucl-ex/0510014]

 an approximately "universal"
m_T dependence is usually attributed to collective flow

•KK one dimensional radius 3-5 fm

- Aliroot (with AliFemto) v4-12-Rev-02
- Local analysis of 3K events PDC2007: HIJING PbPb 5.5 TeV (dN_{ch}/dy~6500)
- 1D KK correlations
 - 0.1 < P_T < 1.0 GeV/c
 - Anti-splitting cut
 - Gaussian distr.: $d^{3}N/d^{3}r^{*} \sim \exp(-r^{*2}/(4r_{0}^{2}))$ KK r_{0} : 2 and 5 fm
 - Source size for kaons from K* decay was corrected on $v_{K*}T_{K*}$: $r'_0 = sqrt(r_0^2 + (v_{K*}T_{K*})^2)$

K.Mikhaylov, A.Stavinsky ITEP

ALICE-week, June-July 2008

K+ Mothers

Pair PID

100 events PbPb@5.5 TeV HIJING Q_{INV}<0.25GeV/c

K+K+:Model&"Experiment"

Splitting cut was applied

Source "expansion" due to K*

One K is direct and the other one from K* decay

- K_{dir}K_{dir} source size is smaller than K_{dir}K_{K*} due to K* decay length
- Assume K* source size the same as K_{dir}K_{dir} (r₀)
- Measured source in second case:

$$r'_{0} = sqrt(r_{0}^{2} + (vT)^{2}) [K_{dir}K_{K^{*}}] or$$

 $r'_{0} =$ sqrt($r_{0}^{2} + (v_{1}T_{1})^{2} + (v_{2}T_{2})^{2})[K_{K^{*}}K_{K^{*}}]$

 Get v of K* from generator (vt~2.6 fm)

+K+: K* source "expansion" (2fm)

Source "expansion" due to K* decay (r_0 =2fm, K* vt ~ 2.6fm)

K⁺K⁺: K^{*} "expansion" (5fm)

Source "expansion" due to K* decay (r_0 =5fm, K* vt ~ 2.6fm)

K+K-: K* "expansion" (2fm)

Example of residual correlations

residual correlation

Distance between $\gamma_{\pi^0} \sim 10^7 \text{ fm}$ No $\gamma\gamma$ interference , but correlation due to $\pi^0 \pi^0$ interference

The correlation function of yy-pair:

 $C(\gamma\gamma) = N_{real} * C(\pi\pi) / N_{mixed}$

where $C(\pi\pi)$ is the correlation function of $\pi^0\pi^0$, N_{real} - the pair distribution for particlepairs from the same event, and N_{mixed} is the corresponding distribution for pairs of particles taken from different events.

 $C(\pi\pi)$ usually parametrized:

$$C(\pi\pi) = 1 + \lambda_{\pi\pi} exp(-Q_{\pi\pi}^{2}r_{0\pi\pi}^{2}),$$

 $\lambda_{\pi\pi}$ - correlation strength, $Q_{\pi\pi}$ - invariant relative momentum, $r_{0\pi\pi}$ - source size

residual correlation

✓ Distance between K⁰_sK⁺ ~20 fm
No interference , no Coulomb
but correlation due to φφ interference
with the width corresponding
relatively small r_{φφ} distance
smearing by decay momentum

Residual correlations for \$\phi\u00e9 correlations

1. There are several sources of the KK correlation function "distortion":

Single Kaon impurity, Resonances, Pair impurity, Splitting-merging,

Residual correlations

- 2. K* expansion could be important for KK
- 3. Study of correlated background to be continued (fake pairs!)
- 4. $K_{S}^{0}K^{+(-)}$ is for $\Phi\Phi$ residual correlations?

Thank you for your attention!

Extra Slides

π Mothers

Resonances can play significant role for $\pi\pi$ correlations

K.Mikhaylov, A.Stavinsky ITEP

K+K+:Different contribution

K.Mikhaylov, A.Stavinsky ITEP

K+K-: Different contribution

Extra Slides

Fake contribution to K+K+ Good KK: 57.9429 Fake KK : 42.0571 pi+K+ : 27.2202 pi+pi+ : 3.57522 pK+ : 3.3108 e+K+ : 4.3075 mu+K+ : 1.12317 pi+e+ : 0.999998 ppi+ : 0.71421 others : 0.733494