# Examination of heavy-ion collisions using EPOS model in the frame of the BES program at RHIC

#### Maria Stefaniak

Klaus Werner Hanna Zbroszczyk

in cooperation with





# Abstract

- Motivation
- EPOS generator
- Beam Energy Scan program
- Methods of analysis and results
  - p<sub>T</sub> spectra
  - Femtoscopy correlations
  - Azimuthal Anisotropy
- Conclusion & plans



# Motivation

- EPOS model for LHC & top RHIC energies
- What about lower energies?

# Motivation

- EPOS model for LHC & top RHIC energies
- What about lower energies?

#### Studies of:



Energy conserving quantum mechanical multiple scattering approach, based on Partons (parton ladders), Off-shell remnants, and partons Saturation.

#### **Gribov - Regge theory**

#### **Parton-based theory**

- Soft aspects of particle collisions
- Multiple scattering
- Interactions described with Pomerons

- Partons: quarks & gluons
- Calculation of parton jets
- QCD & QED

•

#### Parton-based Gribov-Regge theory

Conservation of energy



#### Parton-based Gribov-Regge theory

- Conservation of energy
- Relativistic strings



#### **Parton-based Gribov-Regge theory**

- Conservation of energy
- Relativistic strings
- Open and closed ladders
   I generate the second second



### Beam Energy Scan

#### **BES program:**

Run at RHIC in Brookhaven National Laboratory Collisions of: Au + Au

•





STAR Event -> Run=11143039; Event=22871; Trig=010000 Date=2010/05/24 00:02:42 GMT

### Beam Energy Scan

#### **BES program:**

 Run at RHIC in Brookhaven National Laboratory
 Collisions of: Au + Au

#### **Three Goals:**

Turn-off QGP signatures Find critical point

Examine First order phase transition



# Analysis & Results

• • • • •

 $p_T = \sqrt{p_x^2 + p_y^2}$ 

#### STAR data : J. Phys. Conf. Ser., 446:012017, 2013

#### central 0-5%



 $p_T = \sqrt{p_x^2 + p_y^2}$ 

#### peripheral 60%-80%





 $p_T = \sqrt{p_x^2 + p_y^2}$ 



#### More particles derived from QGP



 $p_T = \sqrt{p_x^2 + p_y^2}$ 

#### STAR data : J. Phys. Conf. Ser., 446:012017, 2013

#### central 0-5%



 $p_T = \sqrt{p_x^2 + p_y^2}$ 

### peripheral 60%-80%



### $p_T = \sqrt{p_x^2 + p_y^2}$

# Au+Au Analysis





 $p_T = \sqrt{p_x^2 + p_y^2}$ 



# Analysis

HBT method

#### R.Hanbury Brown and R.Q.Twiss









### Analysis

#### **Two-particle distribution**

$$P_{2}(p_{1},p_{2}) = E_{1}E_{2}\frac{dN}{d^{3}p_{1}d^{3}p_{2}} = \int d^{4}x_{1}S(x_{1},p_{1})d^{4}x_{2}S(x_{2},p_{2})\Phi(x_{2},p_{2}|x_{1},p_{1})$$



$$C(p_1, p_2) = \frac{P_2(p_1, p_2)}{P_1(p_1)P_1(p_2)}$$

**One-particle distribution** 

$$P_1(p) = E \frac{dN}{d^3 p} = \int d^4 x S(x, p)$$

**S(x,p)** – emission function: the distribution of source density probability of finding particle with x and p

### Analysis

#### In experiment:



Background, distribution of the difference of particles' momentums derived from DIFFERENT collisions

### Analysis

#### Parametrization:

 $C(q_{out}, q_{side}, q_{long}, \lambda) = 1 + \lambda exp(-q_{out}^2 r_{out}^2 - q_{side}^2 r_{side}^2 - q_{long}^2 r_{long}^2)$ 





Au+Au  $\pi^+\pi^+$ 





# Analysis



arXiv:1403.4972

Lambda comparable!

**R**out comparable!

**R**side slightly lower

**R**long relevantly lower

Impact of the hadron cascades

**Au+Au***π*<sup>+</sup>*π*<sup>+</sup> **k**<sub>T</sub>≈ **0.225 GeV/c** 

#### **Elliptic flow**

# Analysis

#### - event plane method

One way of studying the azimuthal anisotropy is the Fourier decomposition, where each of coefficients reports to the shape of matter flow.

$$\frac{dN}{d(\phi - \Phi_{RP})} = \frac{N_0}{2\pi} \left( 1 + 2\sum_{n=1}^{\infty} v_n \cos[(\phi - \Phi_{RP})] \right)$$

- $N_0$  number of particles
- $v_n$  n-th harmonic coefficient
- $\phi$  azimuthal angle of particles
- $\Phi_{RP}$  azimuthal angle of the reaction plane





### • Estimate *event plane* with equation (Fourier coefficient n = 2, elliptic flow)

$$\Phi_2 = \tan^{-1} \left( \frac{\sum_i w_i \sin(2\phi_i)}{\sum_i w_i \cos(2\phi_i)} \right) / 2$$

26

#### **Elliptic flow**

# Analysis

In analyze of elliptic flow were used  $\eta$ -sub method:

- from all measured particles there are selected two groups with "forward" and "backward" pseudorapidity with a gap between them.
- To express the observed  $v_2$  of particles with respect to already investigated event plane one uses:

 $v_2^{obs}(p_T, y) = \langle \cos[2(\phi_i - \Phi_2)] \rangle$ 

 As a consequence of the final multiplicity limitation in the investigation of the angle of the reaction plane, the correction of v<sub>2</sub> with event plane resolution have to be done.

$$R_2 = \sqrt{\langle \cos[2(\Phi_2^A - \Phi_2^B)] \rangle}$$

 $\Phi^A_n$  -  $event\ plane\ calculated\ only\ using "forward-pseudorapidity" particles while <math display="inline">\Phi^B_n$  - with "backward-pseudorapidity" ones.

• Finally:

$$v_2 = \frac{v_2^{obs}}{R_2}$$

STAR data published in Phys. Rev., C88:014902, 2013

#### **Elliptic flow**

### Analysis



#### Au+Au

centrality: 0-80%

 $p \in (0.15, 5 \text{ GeV/c})$   $|\eta| \in (0.05, 1)$ 

**Elliptic flow** 

STAR data published in Phys. Rev., C88:014902, 2013

# Analysis

![](_page_28_Figure_3.jpeg)

Au+Au

centrality: 0-80%

 $p \in (0.15, 5 \text{ GeV/c})$   $|\eta| \in (0.05, 1)$ 

STAR data published in Phys. Rev., C88:014902, 2013

#### **Elliptic flow**

![](_page_29_Figure_2.jpeg)

Analysis

Au+Au

centrality: 0-80%

D-80% p ∈ (0.15, 5 GeV/c)  $|\eta| \in (0.05, 1)$ 

STAR data published in Phys. Rev., C88:014902, 2013

#### **Elliptic flow**

![](_page_30_Figure_2.jpeg)

Analysis

Au+Aucentrality: 0-80% $p \in (0.15, 5 \text{ GeV/c})$ 

31

 $|\eta| \in (0.05, 1)$ 

# Conclusion

- Three different methods were used:
  - transverse momentum spectra
  - elliptic flow
  - femtoscopy correlations
- Decreasing energy of collision results in more relevant differences between simulated and STAR data?

**p**<sub>T</sub> **spectra**: Not enough particles created in fluid in case of the peripheral collisions

#### femtoscopy:

- Relevant discrepancy in R<sub>long</sub> between the simulated and experimental data
- Huge impact of the hadron cascades on the homogeneity length ecliptic flow:
- too high values for the lighter particles
- protons in range of expectation

## Plans

Particularly sensitive to the presence of QGP phase

The development of  $v_3^2$ {2} relies strongly on the presence of a low viscosity QGP phase early in the collision

#### arXiv:1601.01999v1 [nucl-ex] 8 Jan 2016

Ideal observable to probe the formation of QGP

![](_page_33_Figure_5.jpeg)

![](_page_34_Figure_1.jpeg)

arXiv:1601.01999v1 [nucl-ex] 8 Jan 2016

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_1.jpeg)

#### arXiv:1601.01999v1 [nucl-ex] 8 Jan 2016

- **Ridge** non-zero values at larger  $\Delta \eta$  caused by long-range correlations
- **Narrow peak -** caused by short-range correlations.

Can arise from several sources like:

- fragmentation of hard & semi-hard jets
- resonances

• HBT

coulomb interference

![](_page_38_Figure_1.jpeg)

#### arXiv:1601.01999v1 [nucl-ex] 8 Jan 2016

- **Ridge** non-zero values at larger  $\Delta \eta$  caused by long-range correlations
- **Narrow peak -** caused by short-range correlations.

Can arise from several sources like:

- fragmentation of hard & semi-hard jets
- resonances
- HBT
- coulomb interference

UrQMD - non-QGP model in a greement with more peripheral, lower  $\sqrt{s_{NN.}}$ 

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_2.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_42_Figure_2.jpeg)

| $\varphi_1$             | $\varphi_2$ $c_n$ $\eta$           | <b>cumulant</b><br>$\{2\} = \langle \langle 2 \rangle \rangle = \langle \langle \cos n(\varphi_1 - \varphi_2) \rangle \rangle$                             | flow coefficient<br>$v_n\{2\} = \sqrt{c_n\{2\}}$                                   |
|-------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| $\varphi_1$             | $\varphi_2$<br>$c_n \{2$<br>$\eta$ | <b>cumulant</b><br>2, $ \Delta \eta $ = $\langle \langle \cos n(\varphi_1 - \varphi_2) \rangle \rangle  v_n$ {                                             | flow coefficient<br>2, $ \Delta \eta $ = $\sqrt{c_n \{2,  \Delta \eta \}}$         |
| $\varphi_1$ $\varphi_2$ | φ <sub>3</sub> φ <sub>4</sub>      | <b>cumulant</b><br>$c_n{4} = \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle^2$                                              | flow coefficient<br>$v_n\{4\} = \sqrt[4]{-c_n\{4\}}$                               |
| $\varphi_1$ $\varphi_2$ | $\varphi_3 \qquad \varphi_4$       | <b>cumulants</b><br>$c_n\{4,  \Delta\eta \} = \langle\langle 4 \rangle \rangle_{ \Delta\eta } - 2 \cdot \langle\langle 2 \rangle \rangle_{ \Delta\eta }^2$ | flow coefficient<br>$v_n\{4,  \Delta \eta \} = \sqrt[4]{-c_n\{4,  \Delta \eta \}}$ |

#### More detailed analysis

Identified Particles: proton, pion, kaon

Different types of calculation of triangular flow

**EPOS** analysis

### EPOS

. . . . . . . . . . . . . . . . . . . .

# **Baseline for BES II?**

#### Thank you for your attention!

### Backup

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)