troduction Unified Approach Methods and Results Conclusion

# Results about elliptic flow with a unified approach at RHIC energies

Sophys Gabriel

Supervisor: Klaus Werner at Subatech

XIX GDRE WORKSHOP

Heavy Ions at Relativistic Energies - July 2017



Introduction Unified Approach Methods and Results Conclusion

#### Introduction

#### Unified Approach : **EPOS**

- Energy conserving quantum mechanical multiple scattering approach
- based on Partons, parton ladders, strings
- Off-shell remnants
- Splitting of parton ladder

At the end of Ph D  $\rightarrow$  open-diffusion of EPOS?

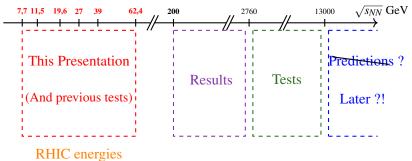


### Unified Approach

When do we use EPOS?

#### Monte Carlo Method

#### Model for very high energy.





duction Unified Approach Methods and Results Conclusion

EPOS : One Event

### Unified Approach

How we construct one event?

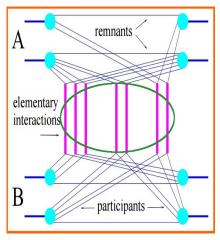
#### Universal Model for all collisions

#### Same procedure applies, based on several stages :

- Initial Conditions
- 2 Core-Corona Approach
- S Viscous hydrodynamic expansion
- Statistical hadronization
- S Final state hadronic cascade



Parton-Based-Gribov-Regge-Theory (PBGRT)

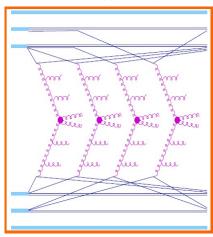


- Initial Conditions
- · Core-Corona Approach
- · Viscous hydrodynamic expansion
- Statistical hadronization
- Final state hadronic cascade
- Interaction between partons are: Pomeron: treated by Quantum Field Theory
- Energy conserved by participants and remnants partons

H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog and K. Werner, Phys. Rept. 350, 93 (2001)



Parton-Based-Gribov-Regge-Theory (PBGRT)



- Initial Conditions
- · Core-Corona Approach
- · Viscous hydrodynamic expansion
- · Statistical hadronization
- · Final state hadronic cascade
- Interaction between partons are: Pomeron: treated by Quantum Field Theory
- Energy conserved by participants and remnants partons
- Pomerons become Partons Ladders
- Partons Ladders become Strings

H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog and K. Werner, Phys. Rept. 350, 93 (2001)



XIX GDRE - Nantes

EPOS: Parton Based Gribov Regge Theory

### Unified Approach

Lund Model: A phenomenological model of hadronization

- Initial Conditions
- · Core-Corona Approach
- · Viscous hydrodynamic expansion
- · Statistical hadronization
- . Final state hadronic cascade









- String without mass and without color between two partons
- Potential proportional to length
- When the potential is sufficient  $\rightarrow$  one pair of quark-antiquark is created: Schwinger Mechanism
- Use also at PYTHIA/JETSET



EPOS: Core-Corona Approach & Hydrodynamical expansion

### Unified Approach

#### **Core-Corona Approach**

Using hydrodynamic  $\rightarrow$  the Core is treated as fluid. Corona becomes Jet  $\Rightarrow$  Later Hadrons!

> remnant flux tube remnant

GDRE2012, Nantes, Jul 2012, Klaus WERNER, Subatech, Nantes

More Scattering  $\Rightarrow$ 



Initial Conditions

· Core-Corona Approach · Viscous hydrodynamic expansion · Statistical hadronization

· Final state hadronic cascade

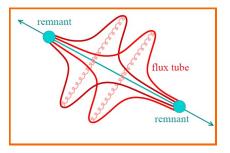
EPOS: Core-Corona Approach & Hydrodynamical expansion

### Unified Approach

#### **Core-Corona Approach**

Using hydrodynamic  $\rightarrow$  the Core is treated as fluid.

Corona becomes Jet  $\Rightarrow$  Later Hadrons!



GDRE2012, Nantes, Jul 2012, Klaus WERNER, Subatech, Nantes

More Scattering  $\Rightarrow$ 



Initial Conditions

· Core-Corona Approach · Viscous hydrodynamic expansion · Statistical hadronization

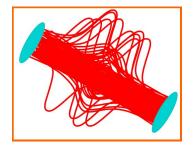
· Final state hadronic cascade

EPOS: Core-Corona Approach & Hydrodynamical expansion

### Unified Approach

#### **Core-Corona Approach**

Using hydrodynamic  $\rightarrow$  the Core is treated as fluid. Corona becomes  $Jet \Rightarrow Later Hadrons !$ 



B. Guiot and K. Werner, J. Phys. Conf. Ser. 589 (2015) no.1



Initial Conditions

· Core-Corona Approach · Viscous hydrodynamic expansion · Statistical hadronization

· Final state hadronic cascade

duction Unified Approach Methods and Results Conclusion

EPOS: Core-Corona Approach & Hydrodynamical expansion

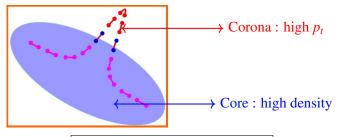
### Unified Approach

#### Initial Conditions

- · Core-Corona Approach
- · Viscous hydrodynamic expansion
- Statistical hadronization
   Final state hadronic cascade
- Core-Corona Approach

Using hydrodynamic  $\rightarrow$  the Core is treated as fluid.

Corona becomes Jet  $\Rightarrow$  Later Hadrons!



B. Guiot and K. Werner, J. Phys. Conf. Ser. 589 (2015) no.1



### Unified Approach

EPOS: Core-Corona Approach & Hydrodynamical expansion

- Initial Conditions
- · Core-Corona Approach
- Viscous hydrodynamic expansion
- · Statistical hadronization

### **Core-Corona Approach**

· Final state hadronic cascade Using hydrodynamic  $\rightarrow$  the Core is treated as fluid.

Corona becomes Jet  $\Rightarrow$  Later Hadrons!

#### **Hydrodynamical expansion**

Core evolves with respect to the equation of relativistic viscous **hydrodynamics** 

Local energy momentum:

$$\partial_{\mu}T^{\mu\nu}=0$$
  $\nu=0,\cdots,3$ 

and the conservation of net charges,

$$\partial N_k^{\mu} = 0, \qquad k = B, S, Q$$

with B, S and Q reffering to baryon number, strangeness and electric charge



ntroduction Unified Approach Methods and Results Conclusion

EPOS: Statistical Hadronization & Hadronic cascade

### **Unified Approach**

- Initial Conditions
- Core-Corona Approach
- Viscous hydrodynamic expansion
- Statistical hadronization
   Final state hadronic cascade

#### **Statistical Hadronization**

Core-Matter makes hadronization Defined by a constant temperature  $T_H$ Procedure of Cooper-Frye

K. Werner, Iu. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, arXiv:1010.0400, Phys. Rev. C 83, 044915 (2011)

#### Hadronic Cascade

Hadron density still big  $\rightarrow$  hadron-hadron rescatterings Use **UrQMD Model** 

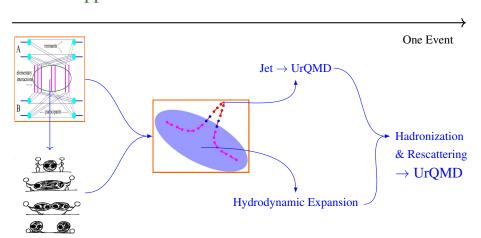
M. Bleicher et al., J. Phys. G25 (1999) 1859

H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys. Rev. C78 (2008) 044901



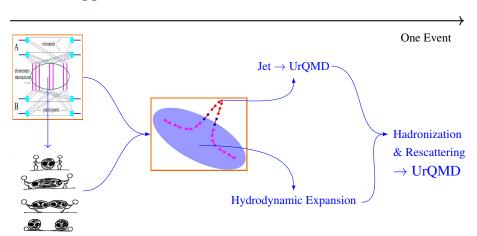
9/28

EPOS: Statistical Hadronization & Hadronic cascade





EPOS: Statistical Hadronization & Hadronic cascade



Let's stop talking about EPOS now



Eta-Sub: Event Plane Method

Event Flow vector (projection of azimuthal angle):

$$Q_{n,x} = \sum_{i} w_{i} \cos(n\phi_{i}) = Q_{n} \cos(n\Psi_{n})$$
$$Q_{n,y} = \sum_{i} w_{i} \sin(n\phi_{i}) = Q_{n} \sin(n\Psi_{n})$$

The sum goes over all particles i used in *the event plane calculation*.  $\phi_i$  and  $w_i$  are the lab azimuthal angle and weight for particle

Where  $\Psi_n$  the event plane angle :

$$\Psi_n = \frac{1}{n} \tan^{-1} \left( \frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right)$$



Eta-Sub: Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

Average over all particles in all events with their azimuthal angle  $\phi_i$  in a given rapidity and  $p_T$  momentum space.



Eta-Sub: Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

Average over all particles in all events with their azimuthal angle  $\phi_i$  in a given rapidity and  $p_T$ momentum space.

The final flow coefficients are : 
$$v_n = \frac{v_n^{\text{obs}}}{\mathcal{R}_n}$$



Eta-Sub: Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

The final flow coefficients are : 
$$v_n = \frac{v_n^{\text{obs}}}{\mathscr{R}_n}$$

Eta-sub method : two planes defined by negative (A) and positive (B) pseudorapidity with  $\approx$  equal multiplicity :



12/28

Eta-Sub: Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

The final flow coefficients are : 
$$v_n = \frac{v_n^{\text{obs}}}{\mathscr{R}_n}$$

Eta-sub method : two planes defined by negative (A) and positive (B) pseudorapidity with  $\approx$  equal multiplicity :



Eta-Sub: Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

The final flow coefficients are :  $v_n = \frac{v_n^{\text{obs}}}{\mathscr{R}_n}$ 

Three planes:

$$\mathcal{R}_n = \sqrt{\frac{\langle \cos[n(\Psi_n^A - \Psi_n^B)) \times \langle \cos[n(\Psi_n^A - \Psi_n^C)) \rangle}{\langle \cos[n(\Psi_n^B - \Psi_n^C)) \rangle}}$$





Eta-Sub: Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

The final flow coefficients are :  $v_n = \frac{v_n^{\text{obs}}}{\mathscr{R}_n}$ 

Three planes:

$$\mathcal{R}_n = \sqrt{\frac{\langle \cos[n(\Psi_n^A - \Psi_n^B)) \times \langle \cos[n(\Psi_n^A - \Psi_n^C)) \rangle}{\langle \cos[n(\Psi_n^B - \Psi_n^C)) \rangle}}$$









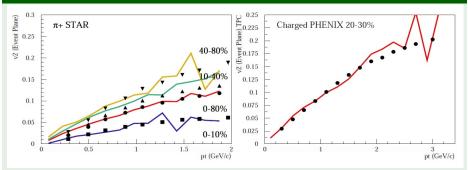
12/28

→ η

$$p_t = \sqrt{p_x^2 + p_y^2}$$

#### Event Plane Method

#### $v_2$ vs Transverse Momentum at EPOS 3.210



At energy collisions:  $\sqrt{s_{NN}} = 19.6$  GeV with  $\approx 120~000$  events

STAR Collaboration (Adamczyck, L. et al.) Phys. Rev. C 88, 014902 (2013) and Phys. Rev. C 93, 014907 (2016)

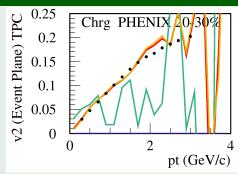
PHENIX Collaboration (A. Adare et al.) Phys. Rev. C 86, 054908 – 2016



Contribution of Core-Corona

$$p_t = \sqrt{p_x^2 + p_y^2}$$

#### $v_2$ vs Transverse Momentum at EPOS 3.210



Red - Full

Orange - Core

Green - Corona

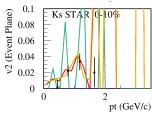
At energy collisions:  $\sqrt{s_{NN}} = 19.6$  GeV with  $\approx 120~000$  events

PHENIX Collaboration (A. Adare et al.) Phys. Rev. C 86, 054908 - 2016



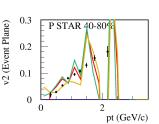
Contribution of Core-Corona

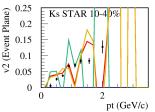
$$p_t = \sqrt{p_x^2 + p_y^2}$$
on of Core-Corona



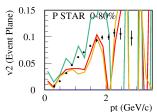
Red - Full

Orange - Core





Green - Corona



At energy collisions:  $\sqrt{s_{NN}} = 7.7 \text{ GeV}$  with  $\approx 30 000 \text{ events}$ 

PHENIX Collaboration (A. Adare et al.) Phys. Rev. C 86, 054908 - 2016



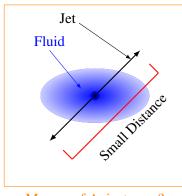
ntroduction Unified Approach Methods and Results Conclusion

#### Results with EPOS

### Results

Contribution of corona?

#### Why a big contribution of corona?



Mesure of Anisotropy?

## Assumption!

Fluid too small?

 $\Rightarrow$  Jets very closed between them

Anisotropy include jets?



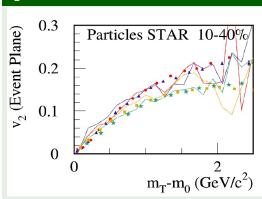
Légende :

### Results

Event Plane Method

$$m_t - m_0 = \sqrt{p_t^2 + m_0^2 - m_0}$$

#### $v_2$ vs Reduce Mass Transverse at EPOS 3.210



proton 
$$p$$
 (uud)  $\rightarrow m_0 = 0.938 \text{ Gev}/c^2$ 
 $\land$  lambda  $\land$  (dus)  $\rightarrow m_0 = 1.156 \text{ Gev}/c^2$ 

- kaon  $K^+$  (us)  $\rightarrow m_0 = 0.494 \text{ GeV}/c^2$
- pion  $\pi^+$  (ud)  $\rightarrow m_0 = 0.140 \text{ GeV}/c^2$

At energy collisions:  $\sqrt{s_{NN}} = 62.4 \text{ GeV}$  with 60 000 events

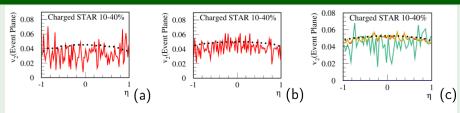
Dubotech

STAR Collaboration (Adamczyck, L. et al.) Phys. Rev. C 88, 014902 (2013)

Event Plane Method

$$\eta = \frac{1}{2} \ln \left( \frac{p + p_z}{p - p_z} \right)$$

### v<sub>2</sub> vs Pseudorapidity at EPOS 3.210



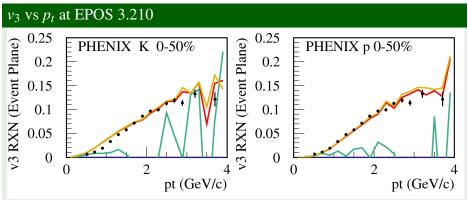
At energy collisions:  $\sqrt{s_{NN}} = 7.7, 11, 39 \text{ GeV}$  with  $\approx 30 000 \text{ events}$ 

STAR Collaboration (Adamczyck, L. et al.) Phys. Rev. C 86, 054908 (2012)



Event Plane Method

$$p_t = \sqrt{p_x^2 + p_y^2}$$



At energy collisions:  $\sqrt{s_{NN}} = 200 \text{ GeV}$  with 287300 events

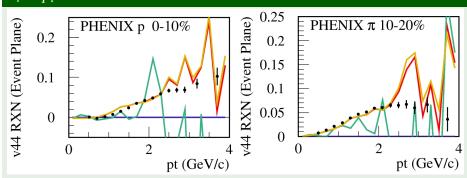
PHENIX Collaboration (A. Adare et al.) Phys. Rev. C 93, 051902 - 2016



**Event Plane Method** 

$$p_t = \sqrt{p_x^2 + p_y^2}$$

#### $v_4$ vs $p_t$ at EPOS 3.210



At energy collisions  $\sqrt{s_{NN}} = 200 \text{ GeV}$  with 287300 events

PHENIX Collaboration (A. Adare et al.) Phys. Rev. C 93, 051902 - 2016



### Approach of Q-Cumulant

#### Procedure to create cumulants by directs calculations:

- **①** Decompose azimuthal correlations as expressions like  $|Q_n|^2$ ,  $|Q_n|^4$  ... in terms of  $\langle 2 \rangle$ ,  $\langle 4 \rangle$  ...
- **2** Solved system of coupled equations for multi-particle scattering in same harmonic  $\langle 2 \rangle, \langle 4 \rangle$  ... *results at previous slides*
- **3** Create  $\langle \langle 2 \rangle \rangle$ ,  $\langle \langle 4 \rangle \rangle$ , average on all events, taking in account weights of events
- **4** Create Cumulants with terms of  $\langle \langle 2 \rangle \rangle$ ,  $\langle \langle 4 \rangle \rangle$  etc ...



### Cumulant Method

O-Cumulant Method: Reference Flow

#### O-Cumulant $\rightarrow$ Recent Method to calculate cumulants $\rightarrow$ one loop over data

A. Bilandzic, R. Snellings, and S. Voloshin Phys. Rev. C 83, 044913 - Published 26 April 2011

Flow vector : 
$$Q_n = \sum_{i=1}^{M} e^{in\phi_i}$$

Azimuthal particles Correlations between 2 or 4 references particles (REP)

$$\langle 2 \rangle \equiv \langle e^{in(\phi_1 - \phi_2)} \rangle = \frac{|Q_n|^2 - M}{M(M-1)}$$

$$\langle 4 \rangle \equiv \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \propto |Q_n|^4 + |Q_{2n}|^2 - 2 \times \mathcal{R}|Q_{2n}Q_n^*Q_n^*| + \cdots$$



Differential Flow

Definitions of vectors p and q:

For particles labeled as POI:

For particles labeled as **both** POI and REP:

$$p_n \equiv \sum_{i=1}^{m_p} e^{in\psi_i}$$

$$q_n \equiv \sum_{i=1}^{m_q} e^{in\psi_i}$$

Average of two- and four-particles azimuthal correlations:

$$\langle 2' \rangle = \frac{\mathscr{R}[p_n Q_n^*] - m_q}{m_p M - m_q} \qquad \langle 4' \rangle \propto \mathscr{R}[p_n Q_n Q_n^* Q_n^*] + \mathscr{R}[q_n Q_n^*] \dots$$



Reference Flow

#### Cumulants for reference flow:

$$c_n\{2\} = \langle \langle 2 \rangle \rangle$$
  
$$c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \times \langle \langle 2 \rangle \rangle^2$$

### Cumulants for differential flow:

$$d_n\{2\} = \langle \langle 2' \rangle \rangle$$
  
$$d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \times \langle \langle 2' \rangle \rangle \langle \langle 2 \rangle \rangle$$

#### **Reference flow or integrated flow:**

$$v_n{2} = \sqrt{c_n{2}}$$
  
 $v_n{4} = \sqrt[4]{-c_n{4}}$ 

#### Differential flow:

$$v'_n\{2\} = d_n\{2\} / \sqrt{c_n\{2\}}$$
$$v'_n\{4\} = -d_n\{4\} / (-c_n\{4\})^{3/4}$$

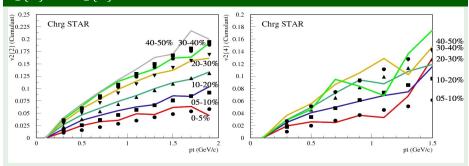
A. Bilandzic, R. Snellings, and S. Voloshin Phys. Rev. C 83, 044913 - Published 26 April 2011



Cumulant Method

$$p_t = \sqrt{p_x^2 + p_y^2}$$

### $v_2\{2\}$ and $v_2\{4\}$ vs Transverse Momentum at EPOS 3.210



At energy collisions  $\sqrt{s_{NN}} = 39$  GeV with  $\approx 100~000$  events

STAR Collaboration (Adamczyck, L. et al.) Phys. Rev. C 86, 054908 (2012)

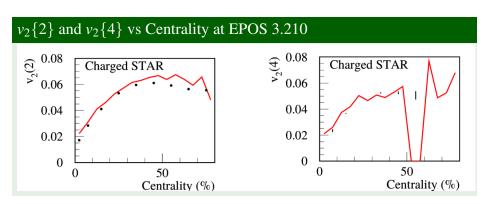


roduction Unified Approach Methods and Results Conclusion

Results with EPOS

#### Results

#### Cumulant Method



At energy collisions  $\sqrt{s_{NN}} = 19.6$  GeV with  $\approx 130~000$  events

STAR Collaboration (Adamczyck, L. et al.) Phys. Rev. C 86, 054908 (2012)



ntroduction Unified Approach Methods and Results Conclusion

#### Conclusion

EPOS was created for **very high energy** with an application for multiple scattering

First Study<sup>1</sup> at BES energies ( $\sqrt{s} = 7.7 \text{ GeV}$  at  $\sqrt{s} = 62.4 \text{ GeV}$ ) for  $v_2$ 

#### We obtain good agreements with data!

We create a **fluid** for each energy between 7.7 GeV at 200 GeV. This **fluid** has a **big part** of elliptic flow since **19.6 GeV**, before the **corona** take **also a big part** → Must to do an investigation ⇒ Look with **cumulants** if we obtain the same comportment.

Next step: Physics Investigation of result, look small system (like *pp,dg* at RHIC), go to the LHC energies

Start with pp at energy collision of 13 TeV.



<sup>&</sup>lt;sup>1</sup>with M. Stefaniak

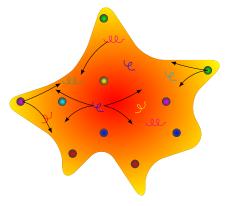
troduction Unified Approach Methods and Results Conclusion

# Thank you for your attention!





## Context: QGP



- Quark-Gluon Plasma (QGP)
- Partons are deconfined
- QGP life-time : 10<sup>-21</sup> s, size : 10<sup>-15</sup> m ⇒ cannot study directly the QGP
- Need theoretical models : **EPOS**



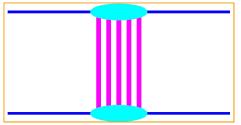
## Gribov-Regge Theory and Pomeron

Effective Field Theory

Elementary interaction → Pomeron exchange

Pomeron : Quantum numbers of vacuum

Vladimir Gribov in ≈ 1960



Elastic Amplitude :  $T(s,t) \approx i s^{\alpha_0 + \alpha' t}$ 



# Hydrodynamic equations

Based on the four-momenta of string segments, we compute the energy momentum tensor and the flavor flow vector at some position x (at  $\tau = \tau_0$ ) as:

$$T^{\mu\nu} = \sum_{i} \frac{\delta p_{i}^{\mu} \delta p_{i}^{\nu}}{\delta p_{i}^{0}} g(x - x_{i})$$

$$N_q^{\mu}(x) = \sum_i \frac{\delta p_i^{\mu}}{\delta p_i^0} q_i g(x - x_i)$$

where q = u,d,s

arXiv:1312.1233v1 [nucl-th] 4 Dec 2013



Appendix

# Unified Approach

**Initial Conditions:** PBGRT to initialize collisions, Pomerons treated by partons ladders after by Lund string

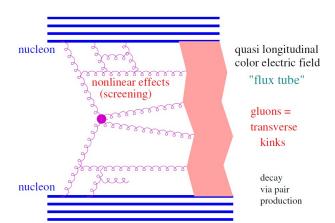
Core-Corona Approach determines Jet and Quark Gluon Plasma

Viscous hydrodynamic expansion for the "core-matter"

**Statistical Hadronization**: Procedure of Cooper-Frye

**Final state hadronic Cascade**: Rescattering of products particle for the transport: UrOMD Model







**Initial conditions.** A Gribov-Regge multiple scattering approach is employed, where the elementary object (by definition called Pomeron) is a DGLAP parton ladder, using in addition a CGC motivated saturation scale for each Pomeron. The parton ladders are treated as classical relativistic (kinky) strings.

Core-corona approach. At some early proper time  $\tau_0$ , one separates fluid (core) and escaping hadrons, including jet hadrons (corona), based on the momenta and the density of string segments. The corresponding energy-momentum tensor of the core part is transformed into an equilibrium one, needed to start the hydrodynamical evolution. This is based on the hypothesis that equilibration happens rapidly and affects essentially the space components of the energy-momentum tensor.



Viscous hydrodynamic expansion. Starting from the initial proper time  $\tau_0$ , the core part of the system evolves according to the equations of relativistic viscous hydrodynamics. A cross-over equation-of-state is used, compatible with lattice QCD.

**Statistical hadronization.** The "core-matter" hadronizes on some hypersurface defined by a constant temperature  $T_H$ , where a so-called Cooper-Frye procedure is employed, using equilibrium hadron distributions.

**Final state hadronic cascade.** After hadronization, the hadron density is still big enough to allow hadron-hadron rescatterings. For this purpose, we use the UrQMD model.



#### — Nantes, France, 15 June 2010 — Klaus WERNER, Subatech, Nantes — 0-4

We will present a "realistic" treatment of the hydrodynamic evolution of ultrarelativistic heavy ion collisions, based on the following features:

- $\triangleright$  initial conditions obtained from a flux tube approach (EPOS),
  - compatible with the string model used since many years for elementary collisions (electron-positron, proton proton),
  - and the color glass condensate picture;
- consideration of the possibility to have a (moderate) initial collective transverse flow;
- > event-by-event procedure,
  - taking into the account the highly irregular space structure of single events.
  - leading to so-called ridge structures in two-particle correlations;
- core-corona separation, considering the fact that only a part of the matter thermalizes;



## Data Comparison

RHIC at few energies: Q-Cumulant

Inclusive charged hadron elliptic flow in Au + Au collisions at

$$\sqrt{s_{NN}} = 7.7 - 39 \text{ GeV}$$

L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 86 (2012) 054908

Measurements of the elliptic flow,  $v_2$ , of charged hadrons in Au+Au collisions at  $\sqrt{s_{NN}} = 7.7$ , 19.6, 27, 39 GeV are presented.

Here, we compare at 39 GeV

We use the same method of STAR to compare Data and Results



## Data Comparison

RHIC at few energies: Event Plane

Elliptic flow of identified hadrons in Au+Au collisions at

$$\sqrt{s_{NN}} = 7.7 - 62.4 \text{ GeV}$$

L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 88 (2013) 014902

Measurements of the elliptic flow,  $v_2$ , of identified hadrons  $(\pi^{\pm}, K^{\pm}, K_s^0, p, \overline{p}, \phi, \Lambda, \overline{\Lambda}, \Xi^-, \overline{\Xi}^+, \Omega^-, \overline{\Omega}^+)$  in Au+Au collisions at  $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39$  and 62.4 GeV are presented.

Here, we compare at 19.6 GeV

We use the same method of STAR to compare Data and Results



Q-Cumulant Method: Reference Flow

Q-Cumulant  $\rightarrow$  Recent Method to calculate cumulants  $\rightarrow$  one loop over data

Correlations between 2 or 4 references particles (REP)



Q-Cumulant Method: Reference Flow

Q-Cumulant  $\rightarrow$  Recent Method to calculate cumulants  $\rightarrow$  one loop over data

Correlations between 2 or 4 references particles (REP)

Flow vector : 
$$Q_n = \sum_{i=1}^M e^{in\phi_i}$$



Q-Cumulant Method: Reference Flow

Q-Cumulant  $\rightarrow$  Recent Method to calculate cumulants  $\rightarrow$  one loop over data

Correlations between 2 or 4 references particles (REP)

Flow vector : 
$$Q_n = \sum_{i=1}^M e^{in\phi_i}$$

$$\langle 2 \rangle = \frac{|Q_n|^2 - M}{M(M-1)}$$

$$\langle 4 \rangle = \frac{|Q_n|^4 + |Q_{2n}|^2 - 2 \times \mathcal{R} [Q_{2n} Q_n^* Q_n^*]}{M(M-1)(M-2)(M-3)} - 2 \frac{2(M-2) \times |Q_n|^2 - M(M-3)}{M(M-1)(M-2)(M-3)}$$



**Event Weight** 

#### Event Average:

#### Definition of weights:

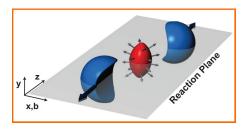
$$W_2 = M(M-1)$$
  $W_4 = M(M-1)(M-2)(M-3)$   
 $w_{2'} = m_p M - m_q$   $w_{4'} = (m_p M - 3m_q)(M-1)(M-2)$ 



12 / 15

Anisotropic Flow

Direct evidence of flow: anisotropy in particle momentum distributions correlated with the reaction plane.



R. Snellings, New J. Phys. 13 (2011) 055008



#### Elliptic Flow

Anisotropic Flow

A way of characterizing the various patterns of anisotropic flow is to use a Fourier expansion :

$$E\frac{d^3N}{d^3\mathbf{p}} = \frac{1}{2\pi} \frac{d^2}{p_t dp_t dy} \left( 1 + 2\sum_{n=1}^{\infty} \mathbf{v_n} \cos\left[n(\phi - \psi_{RP})\right] \right)$$

 $E: energy\ of\ the\ particle\ ;\ p: momentum\ ;\ pt: transverse\ momentum\ ;\ \varphi: azimuthal\ angle\ ;\ y: \\ rapidity\ ;\ \psi_{RP}: reaction\ plane\ angle.$ 



## Elliptic Flow

Anisotropic Flow

A way of characterizing the various patterns of anisotropic flow is to use a Fourier expansion :

$$E\frac{d^3N}{d^3\mathbf{p}} = \frac{1}{2\pi} \frac{d^2}{p_t dp_t dy} \left( 1 + 2\sum_{n=1}^{\infty} \mathbf{v_n} \cos\left[n(\phi - \psi_{RP})\right] \right)$$

 $E: energy \ of \ the \ particle \ ; \ p: \ momentum \ ; \ pt: \ transverse \ momentum \ ; \ \phi: \ azimuthal \ angle \ ; \ y: \ rapidity \ ; \ \psi_{RP}: \ reaction \ plane \ angle.$ 

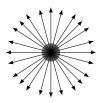
Anisotropic Flow: (n=1: Directed Flow, n=2: Elliptic Flow)

$$v_n(pt, y) = \langle \cos[n(\phi(pt, y) - \psi_{RP})] \rangle$$



#### Anisotropic Flow

Anisotropy  $\neq$  Isotropy



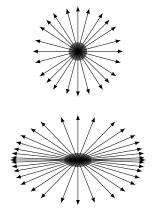
• Elementary Collisions : **Isotropy** of particles production

 $v_2 = 0$ : Elliptic Flow



#### Anisotropic Flow

Anisotropy  $\neq$  Isotropy



 Elementary Collisions: Isotropy of particles production

 $v_2 = 0$ : Elliptic Flow

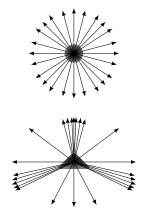
 A-A Collisions: Anisotropy of particles production

$$v_2 > 0$$



#### Anisotropic Flow

Anisotropy  $\neq$  Isotropy



 Elementary Collisions: Isotropy of particles production

 $v_2 = 0$ : Elliptic Flow

A-A Collisions: Anisotropy of particles production

$$v_2 > 0$$

- $v_3 > 0$
- Something more than elementary processus : **QGP**?

