

Insight into particle production mechanisms via angular correlations of pions, kaons, protons and lamdbas in pp collisions

Małgorzata Janik

<u>Remark:</u> this is a presentation for internal discussions during the GDRE workshop. For an article see arXiv:1612.08975.

Warsaw University

For official ALICE presentation on this topic see presentation from CERN-LHC seminar: https://indico.cern.ch/event/632396/

In case of ideas and comments please contact: majanik@cern.ch

GDRE 2017 3-7.06.2017

Insight into particle production mechanisms via angular correlations of pions, kaons, protons and lamdbas in pp collisions

Małgorzata Janik

GDRE 2017 3-7.06.2017

Two-particle ($\Delta\eta$, $\Delta\phi$) angular correlations

- *p* particle momentum;
- θ polar angle;
- η pseudorapidity:

$$\eta = -\ln\left(tg\frac{\theta}{2}\right)$$

 p_{T} - transverse momentum; arphi - azimuthal angle;

Fig. A. Zaborowska

$(\Delta \eta, \Delta \phi)$ angular correlations

Can we learn something more?

One step further: identified particles!

Unexplored phenomena: **conservation laws** and their influence on **particle production mechanisms –** study via correlation functions for particles with **different quark content**

Pion: • Charge		Kaon: • Charg • Strang	je ge quark	Proton: • Charge • Baryon
narticles	momentum	cons	ervation laws	barvon number

particles	momentum	charge	strangeness	baryon number
pions	\checkmark	\checkmark		
kaons	\checkmark	\checkmark	\checkmark	
protons	\checkmark	\checkmark		\checkmark

Useful to perform analysis in a more refined way:

- charge dependence
- identified particles

3/07/2017, GDRE 2017

Data sample & analysis

- Kinematic cuts:
 - $0.2 < p_T < 2.5 \text{ GeV/c for pions}$
 - $0.3 < p_T < 2.5$ GeV/c for kaons
 - $0.5 < p_T < 2.5$ GeV/c for protons
 - |η| < 0.8

- ~200 million minimum bias pp collisions at 7 TeV collected by ALICE in 2010
- Tracking:
 - Inner Tracking System (ITS)
 - Time Projection Chamber (TPC)
- Particle identification:
 - TPC
 - Time-of-Flight (TOF)
- Recent paper arXiv:1612.08975

($\Delta\eta$, $\Delta\phi$) Experimental Correlation Function

$(\Delta \eta, \Delta \phi)$ of identified particles

arXiv:1612.08975

$\Delta \eta \Delta \phi$ of identified particles

arXiv:1612.08975

Małgorzata Janik – Warsaw University of Technology

12/38

3/07/2017, GDRE 2017

Małgorzata Janik – Warsaw University of Technology

13/38

15/38

3/07/2017, GDRE 2017

Małgorzata Janik – Warsaw University of Technology

17/38

Comparison to MC models: like-sign

arXiv:1612.08975

• The models reproduce reasonably well the angular correlations for mesons

• The models fail to reproduce the results for baryons – able to produce 2 baryons close in the phase space

• Energy and local baryon-number conservation laws are implemented in all studied models - not enough to explain the anti-correlation

Comparison to MC models: unlike-sign

arXiv:1612.08975

• The models reproduce reasonably well the angular correlations for mesons

• The models fail to reproduce the results for baryons – able to produce 2 baryons close in the phase space, also baryon-antibaryon pairs have 2 x the magnitude for MC

• Energy and local baryon-number conservation laws are implemented in all studied models - not enough to explain the anti-correlation

7 TeV pp vs. 29 GeV e⁺e⁻ collisions

Comparison to MC models

Comparison to EPOS

EPOS-LHC 13 TeV

• Do not reproduce anticorrelation

3/07/2017, GDRE 2017

Comparison to EPOS

EPOS-LHC 13 TeV

• Do not fully reproduce anti-correlation

Not likely (checked with MC):

• Depletion is a simple manifestation of "local" baryon number conservation and energy conservation

 Production of 2 baryons in a single mini-jet would be suppressed if the initial parton energy is small when compared to the energy required to produce 4 baryons in total (2 in the same mini-jet + 2 anti-particles) – fine at 29 GeV, but why at 7 TeV?!

Other possible explanations:

- Too small pT range?
- Coulomb repulsion?
- Other baryons?
- Fermi-Dirac Quantum Statistics?

Not likely (checked with MC):

• Depletion is a simple manifestation of "local" baryon number conservation and energy conservation

 Production of 2 baryons in a single mini-jet would be suppressed if the initial parton energy is small when compared to the energy required to produce 4 baryons in total (2 in the same mini-jet + 2 anti-particles) – fine at 29 GeV, but why at 7 TeV?!

Other possible explanations:

- Too small pT range?
- Coulomb repulsion?
- Other baryons?
- Fermi-Dirac Quantum Statistics?

Protons

 $p_{Tsum} = |\vec{p}_{T1}| + |\vec{p}_{T2}|$

Protons

 $p_{Tsum} = |\vec{p}_{T1}| + |\vec{p}_{T2}|$

Not likely (checked with MC):

• Depletion is a simple manifestation of "local" baryon number conservation and energy conservation

 Production of 2 baryons in a single mini-jet would be suppressed if the initial parton energy is small when compared to the energy required to produce 4 baryons in total (2 in the same mini-jet + 2 anti-particles) – fine at 29 GeV, but why at 7 TeV?!

Other possible explanations:

- Too small pT range?
- Coulomb repulsion?
- Other baryons?
- Fermi-Dirac Quantum Statistics?

Other baryons?

• Useful to check if effect persists for other baryons than protons – is this a common effect for all baryons?

Other baryons?

- Useful to check if effect persists for other baryons than protons – is this a common effect for all baryons?
- Correlation functions were calculated for lambda hiperons
- All observations from pp can be extended to $\Lambda\Lambda$
- Since Λ baryons are neutral, we are sure that effects of Coulomb repulsion plays marginal role

p∧ correlation functions

- Useful to check if effect persists for other baryons than protons – is this a common effect for all baryons?
- Correlation functions were calculated for non-identical proton-lambda pairs
- All observations from pp can be extended to $\Lambda\Lambda$ and p Λ
- \land baryons are neutral \rightarrow no Coulomb repulsion
- **p** and Λ are not identical \rightarrow no effect from Fermi-Dirac statistics

Comparison to MC models

arXiv:1612.08975

3/07/2017, GDRE 2017

Comparison to EPOS

Comparison between pp, $p\Lambda$, $\Lambda\Lambda$

arXiv:1612.08975

The shape of the correlation function for all studied baryon–baryon pairs is similar, regardless of particles' electric charge or quantum effects.

(anti)baryon-(anti)baryon anticorrelation!

(anti)baryon-(anti)baryon anticorrelation!

3/07/2017, GDRE 2017

3/07/2017, GDRE 2017

Summary

- Correlation studies allow us to investigate wide range of physics phenomena
- Still new mysteries to solve

Baryon-baryon correlations not reproduced by MC models:

- Pythia6
- Pythia8
- Phojet
- EPOS
- HERWIG

No explanation found so far

Non-femtoscopic correlations

- Non-femtoscopic correlations visible in small systems for **pions** and **kaons**:
 - Grow with increasing k_{T}
 - Grow with decreasing multiplicity
 - Significant problem in the fitting procedure
- So far <u>hypothesis of minijet/jet origin</u>
- How do baryon correlations look in pp?

Flat baseline for all baryon-baryon pair measurements.

Consistent picture from femtoscopic measurements and $\Delta\eta\Delta\phi!$

Proton correlations – transformation

- Direct transformation from $C(q_{inv})$ to $C(\Delta \eta, \Delta \phi)$ **not possible**
- One can employ a simple Monte Carlo procedure:
 - generate random η and ϕ from uniform distributions (for 2 particles: η_1 , η_2 , ϕ_1 , ϕ_2)
 - generate random p_T from measured p_T distribution (for 2 particles: p_{T1} , p_{T2})
 - calculate k* from generated η_1 , η_2 , ϕ_1 , ϕ_2 , p_{T1} and p_{T2}
 - take the value of measured femtoscopic correlation function at given k* and apply it as weight while filling the numerator of $C(\Delta \eta, \Delta \phi)$

3/07/2017, GDRE 2017

Protons – femtoscopic correlations

Results:

- Femto correlation produces spike at (Δη,Δφ)=(0,0)
- Both the height and the width of two peaks comparable
- FSI cannot produce observed anti-correlation
- Unsolved question: why are baryons so different?

Pions

3/07/2017, GDRE 2017

Małgorzata Janik – Warsaw University of Technology

46/38