

Quarkonium production in the STAR experiment

Leszek Kosarzewski

Warsaw University of Technology, Faculty of Physics

GDRE Nantes 4-8.7.2016

The author has received financial support for the preparation of doctoral thesis from the National Science Center based on the decision number: DEC-2015/16/T/ST2/00524

- Quarkonium introduction
 Production mechanism
- STAR experiment
- 3 J/ψ from MTD
- 4 J/ψ vs. event activity
- **5** Low- $p_T J/\psi$ excess
- **(**) Υ from MTD
- My results • J/ψ in p + p 200 GeV
 - Υ in p + p 500 GeV

Summary

Quarkonium: J/ψ , Υ

- Expected to dissociate at high temperature in QGP via color screening (T. Matsui and H. Satz PLB 178 (1986) 416)
- Sequential suppression (lower melting temperatures for excited states)
- Feeddown contributions:
 - Prompt J/ ψ : directly produced, decay of $\psi(2S)$ and χ_c
 - Non-prompt J/ψ : $B \to J/\psi$
- Hot nuclear matter (QGP) effects:
 - Dissociation
 - Regeneration
- Cold nuclear matter (CNM) effects

Quarkonium production mechanism

Quarkonium production mechanism

- Still not well understood
- Quarkonium measurements provide tests of production models, help to understand QCD

Models

- Color Singlet $Q\bar{Q}$ produced directly in a color neutral state
- $\bullet\,$ Color Octet $Q\bar{Q}$ produced in a colored state, gluon emissions needed to neutralize color
- Color Evaporation Model bound state is produced if $4m_c^2 < m_{c\bar{c}}^2 < 4m_D^2$,color irrelevant (not included), production rates fixed from the data

Solenoidal Tracker at RHIC Large acceptance: $0 < \phi < 2\pi \ |\eta| < 1$

Detectors used

- TPC particle tracking and identification
- BEMC *e* identification and triggering
- TOF time of flight measurement
- MTD μ identification and triggering $|\eta| < 0.5$ (advantage: less bremsstrahlung)

J/ψ from MTD

$J/\psi \to \mu^+ \mu^-$

- Suppression at low-p_T
- R_{AA} rises at high-p_T
 - Formation time effect
 - Feeddown from B decays
- Surprise: R_{AA} constant in 0 20% centrality
 - Strong suppression even at high-p_T
 - Consistent with previous results

J/ψ from MTD STAR vs. LHC

J/ψ R_{AA} vs N_{part} STAR vs. LHC

- STAR data consistent with PHENIX
- Larger suppression at RHIC than LHC for $p_T > 0~GeV/c$ in central events
- \bullet Smaller suppression at RHIC than LHC for $p_T > 5~GeV/c$

Klaus Werner, MPI at the LHC 2015

String Percolation

- Many strings of color field are formed during extreme collisions ⇒ many particles produced (high event activity)
- In String Percolation Model overlap between strings dampens particle production (collective effect)
- Multiple Parton Interactions in EPOS3 $N_{hard} \propto N_{MPI} \propto N_{ch}$
- EPOS3+Hydro(3+1D) breaks the proportionality, but includes collective effects

Zhenyu Ye, SQM 2016

$J/\psi ightarrow e^+e^-$ vs. event activity

- PYTHIA and EPOS3 fail to describe the data, even though they include MPI
- Percolation Model and EPOS3+Hydro(3+1D) describe the data only qualitatively
- Hints of collective effects in p + p both at RHIC and LHC

J. Adam et al. (ALICE Collaboration) Phys. Rev. Lett. 116, 222301

$\gamma\gamma ightarrow J/\psi ightarrow e^+e^-$

- ALICE has first observed excess of J/ψ at low- p_T
- Origin? Regeneration? Thermal production?

- Excess even at RHIC energy
- Possible explanation is coherent and incoherent photoproduction in ultra-peripheral collisions (UPC)
- New opportunity for QGP studies?

Е

 $Z_2 \epsilon$

Z₁e

 $V=\rho, \omega, \phi, J/\psi$

0.08

Wangmei Zha, SQM 2016

$\gamma\gamma ightarrow J/\psi ightarrow e^+e^-$

- Effect present in Au + Au and U + U
- Constant vs. N_{part}
- Are these really UPC collisions?
- Needs further study especially in p + p

$\Upsilon ightarrow \mu^+ \mu^-$ in Au + Au at 200 GeV

- Υ states separation easier than $J/\psi
 ightarrow e^+e^-$ less bremsstrahlung
- $\Upsilon(2S+3S)/\Upsilon(1S)$ ratio larger at RHIC than at LHC
- Hints of less melting of $\Upsilon(2S+3S)$ at RHIC than LHC

My results - J/ψ in p + p 200 GeV

$J/\psi \rightarrow e^+e^-$ in p + p 200 GeV

- Red points results of my analysis Principal Author
- Published: Phys. Rev. C 93 (2016) 064904
- CEM well describes the data
- Both NRQCD CS+CO models at NLO describe the data

My results - Υ in p + p 500 GeV

Υ in p + p 500 GeV

- Large data sample \Rightarrow high precision results
- Visible signal of 1S, 2S and 3S states
- Separation of 1S form 2S+3S possible
- 2S/3S may be hard to separate
- Ongoing analysis goals:
 - Spectra: p_T and y ⇒ baseline and constraints for models
 - Event activity studies. Is it the same for \varUpsilon as at LHC?

Presented at:

- Hot Quarks 2014
- Zimanyi School 2014
- Quark Matter 2015

- Surprisingly strong J/ψ suppression at high p_T in 0-20% central Au+Au
- \bullet Smaller suppression at RHIC than LHC for $p_T > 5~GeV/c$
- J/ψ vs. event activity studies give indication of collectivity in p+p both at RHIC and LHC
- $\Upsilon(2S+3S)/\Upsilon(1S)$ ratio measured by MTD larger at RHIC than at LHC
- Hints of less melting of $\Upsilon(2S+3S)$ at RHIC than LHC
- J/ψ cross section in p+p at 200 GeV in agreement with CEM and NRQCD+NLO models
- \bullet Work in progress on \varUpsilon vs. event activity studies at RHIC

BACKUP