

Nonidentical particle correlations

Katarzyna Poniatowska

Warsaw University of Technology Facoulty of Physics

GDRE 2014

07.07.2014

Katarzyna Poniatowska

Outline

- > EPOS model
 - Spectra p_T from EPOS and STAR²
 - Four-vector of space and momentum
- Correlation functions
 - Space-time asymmetry
 - STAR data
 - Results from EPOS
 - Centrality dependence
 - Fits
 - Sizes calculated from correlation functions
 - STAR and EPOS data for 39 GeV
- Summary
- Annotation

EPOS model¹

EPOS is a parton model, with many binary parton-parton interactions, where each one creating a parton ladder.

- Energy-sharing : for cross section calculation and particle production
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting
- Collective effects for dense systems
 (LHC energies)

Author of the EPOS model is Klaus Werner from SUBATECH, University of Nantes – IN2P3/CNRS– EMN, Nantes, France.

Spectra $p_{\scriptscriptstyle \rm T}$ from EPOS and STAR^2

Spectra $\boldsymbol{p}_{\rm T}$ from EPOS and STAR^2

Transverse momentum spectra results for charged particles from EPOS model are between STAR pT spectra for the most central collisions (0-5%) and peripheral collisions (60-80%).

GDRE 2014

07.07.2014

Space four-vector

GDRE 2014

07.07.2014

Space four-vector

GDRE 2014

07.07.2014

Momentum four-vector

GDRE 2014

07.07.2014

Momentum four-vector

Particles with positive charge @ 11.5GeV

GDRE 2014

07.07.2014

Correlation functions

 $\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_2$ $\mathbf{k}^* = \mathbf{p}_1 = -\mathbf{p}_2$ (relative pair momentum, calculated in the center of pair mass) \mathbf{z} – beam direction \mathbf{r} – radius \mathbf{p}_1 and \mathbf{p}_2 – 1 and 2 particle momentum

Correlation function $C(\mathbf{p}_1, \mathbf{p}_2) = \frac{P_2(\mathbf{p}_1, \mathbf{p}_2)}{P_1(\mathbf{p}_1)P_1(\mathbf{p}_2)}$

 $P_2(\mathbf{p}_1, \mathbf{p}_2)$ – the probability of the simultaneous two particles emission with momentum p_1 and p_2 $P_1(\mathbf{p}_1)$, $P_1(\mathbf{p}_2)$ – the probability of the particle emission with momentum p_1 or p_2

Space-time asymmetry

GDRE 2014

07.07.2014

Katarzyna Poniatowska

STAR data

GDRE 2014

07.07.2014

STAR data

AuAu collision at $\sqrt{s_{NN}} = 130 \text{GeV}$

AuAu collision at $\sqrt{s_{NN}} = 39$ GeV

GDRE 2014

07.07.2014

Results from EPOS

Correlation function @ 7.7GeV

GDRE 2014

07.07.2014

Results from EPOS

- > The shape of the functions is determined by Coulomb force.
- In this model there is no big difference between correlation functions of the same sign systems (Pion - Kaon - and Pion + Kaon +) and for correlation functions for different sign systems (Pion - Kaon + and Pion + Kaon -).

Centrality dependence

GDRE 2014

07.07.2014

Katarzyna Poniatowska

Centrality dependence

> No association between the strength of interaction and collision centrality for energy 7.7GeV, 11.5GeV, 19.6GeV, 27GeV and 39GeV.

Katarzyna Poniatowska

Centrality dependence

 No association between the strength of interaction and collision centrality for energy 7.7GeV, 11.5GeV, 19.6GeV, 27GeV and 39GeV.

Katarzyna Poniatowska

Fits

GDRE 2014

07.07.2014

Katarzyna Poniatowska

Fits

Correlation function with fit @ 27GeV

Correlation function with fit @ 27GeV

Correlation function with fit @ 39GeV

Correlation function with fit @ 39GeV

07.07.2014

GDRE 2014

Sizes calculated from correlation functions

> We do not observe energy dependence in source sizes in EPOS model.

STAR and EPOS data for 39 GeV

Katarzyna Poniatowska

07.07.2014

STAR and EPOS data for 39 GeV

> We observe difference between STAR and EPOS data

GDRE 2014

07.07.2014

Summary

- Transverse momentum spectra results for charged particles from EPOS model are between STAR p_T spectra for the most central collisions (0-5%) and peripheral (60-80%).
- There is no big difference in EPOS model between correlation functions of the same sign particles systems (Pion - Kaon - and Pion + Kaon +) and for correlation functions for different sign particles systems (Pion - Kaon + and Pion + Kaon -).
- No association between the strength of interaction and collision centrality for energy 7.7GeV, 11.5GeV, 19.6GeV, 27GeV and 39GeV.
- > We do not observe energy dependence in source sizes in EPOS model.
- Yo compare the STAR resultes from BES with the model, we need the model with hydrodynamics.

Thank you!

Annotation

1. *New Developments of EPOS 2*; T. Pierog from KIT, Institut fur Kernphysik, Karlsruhe, Germany; Iu. Karpenko from Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine; S. Porteboeuf from University of Clermont-Ferrand, Clermont-Ferrand, France; K. Werner from SUBATECH, University of Nantes – IN2P3/CNRS– EMN, Nantes, France

2. Quark Matter 12-18 August 2012, Proceedings; **R_CP and R_AA** *Measurements of Identified and Unidentified Charged Particles at High p_T in Au+Au Collisions at 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV in STAR*, Evan Sangaline for the STAR Collaboration