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Problem formulation

Fast and efficient code for hydrodynamics would enable us to study
collisions event–by–event in full 3+1D.

For this a huge amount of processing power is required.

GPUs (Graphics Processing Units) seem to be a promising and
adequate solution.

Our project aims to implement hydrodynamic algorithms using
NVIDIA GPGPU (General Purpose Computing on Graphics
Processing Units) solution, namely the CUDA framework.

Early stage of developement.
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Motivation

Main reasons to invest in GPGPU:

High performance leading to big speedups in parallel problems,

Lower power consumption per FLOPS,

Low price per FLOPS (Floating point OPeration per Second)
typically 0.2–0.3 USD per theoretical GFLOPS for NVIDIA cards
5–15 USD per GFLOPS for Intel processors

not a perfect measure — often memory copying is the bottleneck
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CUDA framework

Programming in a C++—like language.

A cluster of 128–512 processors which execute the kernel in
parallel.

Up to 4 GPUs in a single unit.

Memory types:

global memory big, slow, common to all threads, accessible by CPU

shared memory small, relatively fast, accessed by threads in a block

registers the fastest, only several per thread

Threads are divided into a grid of blocks, and are executed in parallel
within a warp.
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CUDA framework

images from NVIDIA CUDA Programming Guide
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Hydrodynamic calculations

To solve the hydrodynamics equations:

∂tU +∇ · F(U) = 0

after discretization (in 1+1D):

Un+1
i = Un

i +
∆t
∆x

(
Fi− 1

2
− Fi+ 1

2

)
we use MUSCL w/ slope limiting + Musta–Force algorithm, which gives
second order accuracy in time and space.
In order to apply this scheme, each cell must access itself in the
preceding timestep, and 2 neighbouring cells on each side.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 7 / 21



Hydrodynamic calculations

MUSCL makes a linearization inside the cells, edges (red dots) are
propagated 1/2 of a timestep and given to Musta–Force, which
computes final inter–cell values.

i

i

U
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Preliminary results for 2D with UrQMD generated
initial conditions

Plots show initial energy density, energy density after freezeout, and
freezeout coordinates.
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GPU implementation

We have to map cells→ threads.

Each thread corresponds to a point in XY plane. The kernel loops
over Z axis.

In order to minimize redundant global memory reads, data is
cached in shared memory and in registers.

XY planes are cached in shared memory, neighbours in Z direction
in registers.

Blocks of threads must overlap by 4 threads in XY plane, as a
border condition of size 2 is always required.
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Current state of affairs
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Future plans

Encapsulate in a flexible, object–oriented
C++ interface that allows easy integration
with other models and software as a library
or stand–alone program.

START

read data

hydro init

step

completed?
(t,freezout) interrupt?

statistics

save data

END

Yes

No

No

Yes
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Draft UML diagram

generates ICs

creates events

Hydro

#fluid : FluidDynamics*
#freezeout : Kinematics*
#fdata : FluidContainer*
#kdata : FreezeoutContainer*
#config : ConfigContainer*

+Hydro(FluidDynamics*, k : Kinematics*)
+init(c : ConfigContainer*, fl : FluidContainer* = NULL,

fr : FreezeoutContainer* = NULL)
+fluidData() : FluidContainer*
+freezeoutData() : FluidContainer*
+step()
+finalize()

simulates single
event
simulates single
event

FluidDynamics

#config : ConfigContainer*

+FluidDynamics(c : ConfigContainer*)
+step(fl : FluidContainer*)

solves
∂U
∂t + ∇F (U) = 0
solves
∂U
∂t + ∇F (U) = 0

CudaFluid

CFluid

ClFluid

CudaMustaForce

CudaHlle

Implementation
in CUDA
Implementation
in CUDA

Kinematics

#config : ConfigContainer*

+Kinematics(c : ConfigContainer*)
+step(fl : FluidContainer*,
fr : FreezeoutContainer*)

checks freezeout
conditions and
forges Freezeout-
Container

checks freezeout
conditions and
forges Freezeout-
Container

CudaKinematics

CKinematics

ClKinematics

Stat

#config : ConfigContainer*
#data : StatContainer*

+Stat(c : ConfigContainer*)
+addEvent(e : FreezeoutContainer*)
+statData() : StatContainer*

collects events
and computes
statistics

collects events
and computes
statistics

Generator

#config : ConfigContainer*

+Generator(c : ConfigContainer*)
+generate() : FluidContainer*

MCGenerator

Figure 1: Class hierarchy
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Thank you



Equations
Hydrodynamics equations:

∂tE +∇ · [(E + p)~v] = 0 (1)

∂t ~M +∇ ·
[
~M~v + p̂I

]
= 0 (2)

∂tR +∇ · [R~v] = 0 (3)

where:

E = (e + p)γ2 − p (4)
~M = (e + p)γ2~v (5)

R = nγ (6)

In short:

∂tU +∇ · F(U) = 0 (7)

LAB frame variables: E, ~M, R, ~v.
Fluid element frame variables: e, p, n.
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Integration algorithm

The scheme for equation

∂tU +∇ · F(U) = 0

is

Un+1
i = Un

i +
∆t
∆x

(
Fi− 1

2
− Fi+ 1

2

)
(8)

We need to know Fi+ 1
2

and Fi− 1
2
.
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Computing Fi+ 1
2

and Fi− 1
2

— Musta–Force method

In first iteration UL = Ui and UR = Ui+1.
Step 1:

FL = F(UL), FR = F(UR)

UM =
1
2

[UL + UR]− 1
2

∆t
∆x

[FL − FR] (9)

FM = F(UM) (10)

F(U) =

(E + p)~v
~M~v + p̂I

R~v

 (11)

Fi+ 1
2

=
1
4

[
FL + 2FM + FR −

∆x
∆t

(UR − UL)

]
(12)

(13)

To compute F(U) we additionally need to know ~v and p.
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Computing Fi+ 1
2

and Fi− 1
2

— Musta–Force method

Step 2:

Unew
L = UL −

∆t
∆x

[
Fi+ 1

2
− FL

]
(14)

Unew
R = UR −

∆t
∆x

[
FR − Fi+ 1

2

]
(15)

We then substitute new UL,R in step 1.
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SLIC/MUSCL scheme

In this method we create a linear approximation of U(x) inside[
xi− 1

2
, xi+ 1

2

]
, so that on limit points:

UL = Ui −
1
2

∆i (16)

UR = Ui +
1
2

∆i (17)

where ∆i is the slope vector.
Next step is to evolve UL,R by a half step:

ŪL,R = UL,R +
1
2

∆t
∆x

[F(UL)− F(UR)] (18)

Then we use Musta–Force, using UR in i–th cell and UL in i+1–th cell as
initial conditions.
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SLIC/MUSCL scehem — choosing ∆i

The formula is:

∆i =
1
2

(1 + ω)(Ui − Ui−1) +
1
2

(1− ω)(Ui+1 − Ui), ω ∈ [−1,1] (19)

To avoid oscillations we use slope limiters — we change
∆i → ∆̄i = ξ(r)∆i, where r =

Ui−Ui−1
Ui+1−Ui

One of choices for ξ is called MINBEE/MINMOD:

ξ(r) = max[0,min(1, r)] (20)
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Getting ~v and p
Using

M = (E + p)v

we have:

v =
M

E + p
(21)

We obtain:

e = E−Mv (22)

n = R
√

1− v2 (23)

Pressure p is computed using eos p = p(e,n):

v =
M

E + p(E−Mv,R
√

1− v2)
(24)

~v = v
~M
M

(25)
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