
3D relativistic hydrodynamic computations on
graphics processing units

Przemysław Duda1, Daniel Kikoła3, Joanna Porter-Sobieraj2, Marcin
Słodkowski1, Daniel Kowalski1, Jan Sikorski1, Piotr Krzyżanowski1,

Natalia Książek1

1 Faculty of Physics
Warsaw University of Technology

2 Faculty of Mathematics and Information Science,
Warsaw University of Technology

3 Department of Physics,
Purdue University

July 9, 2012

Contents

Introduction,

Motivation,

NVIDIA CUDA Framework,

Hydrodynamics on the GPU,

Future plans

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 2 / 21

Problem formulation

Fast and efficient code for hydrodynamics would enable us to study
collisions event–by–event in full 3+1D.

For this a huge amount of processing power is required.

GPUs (Graphics Processing Units) seem to be a promising and
adequate solution.

Our project aims to implement hydrodynamic algorithms using
NVIDIA GPGPU (General Purpose Computing on Graphics
Processing Units) solution, namely the CUDA framework.

Early stage of developement.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 3 / 21

Motivation

Main reasons to invest in GPGPU:

High performance leading to big speedups in parallel problems,

Lower power consumption per FLOPS,

Low price per FLOPS (Floating point OPeration per Second)
typically 0.2–0.3 USD per theoretical GFLOPS for NVIDIA cards
5–15 USD per GFLOPS for Intel processors

not a perfect measure — often memory copying is the bottleneck

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 4 / 21

Motivation

Main reasons to invest in GPGPU:

High performance leading to big speedups in parallel problems,

Lower power consumption per FLOPS,

Low price per FLOPS (Floating point OPeration per Second)
typically 0.2–0.3 USD per theoretical GFLOPS for NVIDIA cards
5–15 USD per GFLOPS for Intel processors
not a perfect measure — often memory copying is the bottleneck

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 4 / 21

CUDA framework

Programming in a C++—like language.

A cluster of 128–512 processors which execute the kernel in
parallel.

Up to 4 GPUs in a single unit.

Memory types:

global memory big, slow, common to all threads, accessible by CPU

shared memory small, relatively fast, accessed by threads in a block

registers the fastest, only several per thread

Threads are divided into a grid of blocks, and are executed in parallel
within a warp.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 5 / 21

CUDA framework

images from NVIDIA CUDA Programming Guide

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 6 / 21

Hydrodynamic calculations

To solve the hydrodynamics equations:

∂tU +∇ · F(U) = 0

after discretization (in 1+1D):

Un+1
i = Un

i +
∆t
∆x

(
Fi− 1

2
− Fi+ 1

2

)
we use MUSCL w/ slope limiting + Musta–Force algorithm, which gives
second order accuracy in time and space.
In order to apply this scheme, each cell must access itself in the
preceding timestep, and 2 neighbouring cells on each side.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 7 / 21

Hydrodynamic calculations

MUSCL makes a linearization inside the cells, edges (red dots) are
propagated 1/2 of a timestep and given to Musta–Force, which
computes final inter–cell values.

i

i

U

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 8 / 21

Preliminary results for 2D with UrQMD generated
initial conditions

Plots show initial energy density, energy density after freezeout, and
freezeout coordinates.

-40
-20

0
20

40

-40

-20

0

20

40

0
10
20
30
40
50
60
70

vis
Entries 65536

Mean x -0.3963
Mean y -0.4133

RMS x 2.62
RMS y 2.859

vis
Entries 65536

Mean x -0.3963
Mean y -0.4133

RMS x 2.62
RMS y 2.859

vis

-40
-20

0
20

40

-40

-20

0

20

40

0
0.2
0.4
0.6
0.8

1
1.2
1.4

vis
Entries 65536
Mean x 0.3998
Mean y 0.3833
RMS x 22.2
RMS y 21.9

vis
Entries 65536
Mean x 0.3998
Mean y 0.3833
RMS x 22.2
RMS y 21.9

vis

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 9 / 21

GPU implementation

We have to map cells→ threads.

Each thread corresponds to a point in XY plane. The kernel loops
over Z axis.

In order to minimize redundant global memory reads, data is
cached in shared memory and in registers.

XY planes are cached in shared memory, neighbours in Z direction
in registers.

Blocks of threads must overlap by 4 threads in XY plane, as a
border condition of size 2 is always required.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 10 / 21

Current state of affairs

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 11 / 21

Future plans

Encapsulate in a flexible, object–oriented
C++ interface that allows easy integration
with other models and software as a library
or stand–alone program.

START

read data

hydro init

step

completed?
(t,freezout) interrupt?

statistics

save data

END

Yes

No

No

Yes

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 12 / 21

Draft UML diagram

generates ICs

creates events

Hydro

#fluid : FluidDynamics*
#freezeout : Kinematics*
#fdata : FluidContainer*
#kdata : FreezeoutContainer*
#config : ConfigContainer*

+Hydro(FluidDynamics*, k : Kinematics*)
+init(c : ConfigContainer*, fl : FluidContainer* = NULL,

fr : FreezeoutContainer* = NULL)
+fluidData() : FluidContainer*
+freezeoutData() : FluidContainer*
+step()
+finalize()

simulates single
event
simulates single
event

FluidDynamics

#config : ConfigContainer*

+FluidDynamics(c : ConfigContainer*)
+step(fl : FluidContainer*)

solves
∂U
∂t + ∇F (U) = 0
solves
∂U
∂t + ∇F (U) = 0

CudaFluid

CFluid

ClFluid

CudaMustaForce

CudaHlle

Implementation
in CUDA
Implementation
in CUDA

Kinematics

#config : ConfigContainer*

+Kinematics(c : ConfigContainer*)
+step(fl : FluidContainer*,
fr : FreezeoutContainer*)

checks freezeout
conditions and
forges Freezeout-
Container

checks freezeout
conditions and
forges Freezeout-
Container

CudaKinematics

CKinematics

ClKinematics

Stat

#config : ConfigContainer*
#data : StatContainer*

+Stat(c : ConfigContainer*)
+addEvent(e : FreezeoutContainer*)
+statData() : StatContainer*

collects events
and computes
statistics

collects events
and computes
statistics

Generator

#config : ConfigContainer*

+Generator(c : ConfigContainer*)
+generate() : FluidContainer*

MCGenerator

Figure 1: Class hierarchy

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 13 / 21

Thank you

Equations
Hydrodynamics equations:

∂tE +∇ · [(E + p)~v] = 0 (1)

∂t ~M +∇ ·
[
~M~v + p̂I

]
= 0 (2)

∂tR +∇ · [R~v] = 0 (3)

where:

E = (e + p)γ2 − p (4)
~M = (e + p)γ2~v (5)

R = nγ (6)

In short:

∂tU +∇ · F(U) = 0 (7)

LAB frame variables: E, ~M, R, ~v.
Fluid element frame variables: e, p, n.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 15 / 21

Integration algorithm

The scheme for equation

∂tU +∇ · F(U) = 0

is

Un+1
i = Un

i +
∆t
∆x

(
Fi− 1

2
− Fi+ 1

2

)
(8)

We need to know Fi+ 1
2

and Fi− 1
2
.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 16 / 21

Computing Fi+ 1
2

and Fi− 1
2

— Musta–Force method

In first iteration UL = Ui and UR = Ui+1.
Step 1:

FL = F(UL), FR = F(UR)

UM =
1
2

[UL + UR]− 1
2

∆t
∆x

[FL − FR] (9)

FM = F(UM) (10)

F(U) =

(E + p)~v
~M~v + p̂I

R~v

 (11)

Fi+ 1
2

=
1
4

[
FL + 2FM + FR −

∆x
∆t

(UR − UL)

]
(12)

(13)

To compute F(U) we additionally need to know ~v and p.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 17 / 21

Computing Fi+ 1
2

and Fi− 1
2

— Musta–Force method

Step 2:

Unew
L = UL −

∆t
∆x

[
Fi+ 1

2
− FL

]
(14)

Unew
R = UR −

∆t
∆x

[
FR − Fi+ 1

2

]
(15)

We then substitute new UL,R in step 1.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 18 / 21

SLIC/MUSCL scheme

In this method we create a linear approximation of U(x) inside[
xi− 1

2
, xi+ 1

2

]
, so that on limit points:

UL = Ui −
1
2

∆i (16)

UR = Ui +
1
2

∆i (17)

where ∆i is the slope vector.
Next step is to evolve UL,R by a half step:

ŪL,R = UL,R +
1
2

∆t
∆x

[F(UL)− F(UR)] (18)

Then we use Musta–Force, using UR in i–th cell and UL in i+1–th cell as
initial conditions.

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 19 / 21

SLIC/MUSCL scehem — choosing ∆i

The formula is:

∆i =
1
2

(1 + ω)(Ui − Ui−1) +
1
2

(1− ω)(Ui+1 − Ui), ω ∈ [−1,1] (19)

To avoid oscillations we use slope limiters — we change
∆i → ∆̄i = ξ(r)∆i, where r =

Ui−Ui−1
Ui+1−Ui

One of choices for ξ is called MINBEE/MINMOD:

ξ(r) = max[0,min(1, r)] (20)

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 20 / 21

Getting ~v and p
Using

M = (E + p)v

we have:

v =
M

E + p
(21)

We obtain:

e = E−Mv (22)

n = R
√

1− v2 (23)

Pressure p is computed using eos p = p(e,n):

v =
M

E + p(E−Mv,R
√

1− v2)
(24)

~v = v
~M
M

(25)

Jan Sikorski (WUT) zeus@mim.it.cx July 9, 2012 21 / 21

